<iframe src="https://jsxgraph.uni-bayreuth.de/share/iframe/projectile-motion" style="border: 1px solid black; overflow: hidden; width: 550px; aspect-ratio: 55 / 65;" name="JSXGraph example: Projectile motion" allowfullscreen ></iframe>
<div id="board-0-wrapper" class="jxgbox-wrapper " style="width: 100%; "> <div id="board-0" class="jxgbox" style="aspect-ratio: 1 / 1; width: 100%;" data-ar="1 / 1"></div> </div> <script type = "text/javascript"> /* This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-sa/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology and the autor Wigand Rathmann (https://en.www.math.fau.de/rathmann/) in the credits. */ const BOARDID = 'board-0'; var angle, v, friction, tFinal, curveN, // Sliders point, // Start point cf, cf2; // Curves const board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-5, 5, 5, -5] }); // Create some sliders to control the model angle = board.create('slider', [[1.1, 4.3], [3.1, 4.3], [0, 0.7, 1.57]], {name: 'angle'}); v = board.create('slider', [[1.1, 4.7], [3.1, 4.7], [0, 10, 10]], {name: 'velocity'}); friction = board.create('slider', [[1.1, 3.9], [3.1, 3.9], [0, 0.16, 2]], {name: 'friction', snapWidth: 0.05}); tFinal = board.create('slider', [[1.1, 3.5], [3.1, 3.5], [0, 5, 15]], {name: 'tEnd'}); curveN = board.create('slider', [[1.1, 3.1], [3.1, 3.1], [20, 100, 200]], {name: 'N', snapWidth: 1}); // Trajectory: // Initial point point = board.create('point', [-4, 0], { name: '(x_0,y_0)', color: 'red' }); // ODE for projectile var frk = function(t, x) { // Friction let y = [ x[2], x[3], 0 - friction.Value() * x[2] * x[2], -9.81 - friction.Value() * x[3] * x[3] ]; return y; }; // Forward solver using JSXGraph's Runge-Kutta algorithm. // Note: x[0] is x, x[1] is y, x[2] is \dot x, x[3] is \dot y var forwardSolver = function() { var I, x0; // Time interval I = [0, tFinal.Value()]; // Initial value x0 = [point.X(), point.Y(), v.Value() * Math.cos(angle.Value()), v.Value() * Math.sin(angle.Value())]; // Solve the ODE return JXG.Math.Numerics.rungeKutta('heun', x0, I, curveN.Value(), frk); }; // Create and update curve which approximates the trajectory with friction cf = board.create('curve', [[], []], {strokeWidth: 2}); cf.updateDataArray = function() { var i; // Solve ODE var data = forwardSolver(); this.dataX = []; this.dataY = []; // Copy ODE solution to the curve for (i = 0; i < data.length; i++) { this.dataX[i] = data[i][0]; this.dataY[i] = data[i][1]; } } // Show the analytic solution without friction cf2 = board.create('curve', [ (t) => v.Value() * Math.cos(angle.Value()) * t + point.X(), (t) => v.Value() * Math.sin(angle.Value()) * t - 9.81 / 2 * t * t + point.Y(), 0, () => tFinal.Value() ], { strokeWidth: 1, strokeColor: 'red' }); </script>
/* This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-sa/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology and the autor Wigand Rathmann (https://en.www.math.fau.de/rathmann/) in the credits. */ const BOARDID = 'your_div_id'; // Insert your id here! var angle, v, friction, tFinal, curveN, // Sliders point, // Start point cf, cf2; // Curves const board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-5, 5, 5, -5] }); // Create some sliders to control the model angle = board.create('slider', [[1.1, 4.3], [3.1, 4.3], [0, 0.7, 1.57]], {name: 'angle'}); v = board.create('slider', [[1.1, 4.7], [3.1, 4.7], [0, 10, 10]], {name: 'velocity'}); friction = board.create('slider', [[1.1, 3.9], [3.1, 3.9], [0, 0.16, 2]], {name: 'friction', snapWidth: 0.05}); tFinal = board.create('slider', [[1.1, 3.5], [3.1, 3.5], [0, 5, 15]], {name: 'tEnd'}); curveN = board.create('slider', [[1.1, 3.1], [3.1, 3.1], [20, 100, 200]], {name: 'N', snapWidth: 1}); // Trajectory: // Initial point point = board.create('point', [-4, 0], { name: '(x_0,y_0)', color: 'red' }); // ODE for projectile var frk = function(t, x) { // Friction let y = [ x[2], x[3], 0 - friction.Value() * x[2] * x[2], -9.81 - friction.Value() * x[3] * x[3] ]; return y; }; // Forward solver using JSXGraph's Runge-Kutta algorithm. // Note: x[0] is x, x[1] is y, x[2] is \dot x, x[3] is \dot y var forwardSolver = function() { var I, x0; // Time interval I = [0, tFinal.Value()]; // Initial value x0 = [point.X(), point.Y(), v.Value() * Math.cos(angle.Value()), v.Value() * Math.sin(angle.Value())]; // Solve the ODE return JXG.Math.Numerics.rungeKutta('heun', x0, I, curveN.Value(), frk); }; // Create and update curve which approximates the trajectory with friction cf = board.create('curve', [[], []], {strokeWidth: 2}); cf.updateDataArray = function() { var i; // Solve ODE var data = forwardSolver(); this.dataX = []; this.dataY = []; // Copy ODE solution to the curve for (i = 0; i < data.length; i++) { this.dataX[i] = data[i][0]; this.dataY[i] = data[i][1]; } } // Show the analytic solution without friction cf2 = board.create('curve', [ (t) => v.Value() * Math.cos(angle.Value()) * t + point.X(), (t) => v.Value() * Math.sin(angle.Value()) * t - 9.81 / 2 * t * t + point.Y(), 0, () => tFinal.Value() ], { strokeWidth: 1, strokeColor: 'red' });
<jsxgraph width="100%" aspect-ratio="1 / 1" title="Projectile motion" description="This construction was copied from JSXGraph examples database: BTW HERE SHOULD BE A GENERATED LINKuseGlobalJS="false"> /* This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-sa/4.0/ Please note you have to mention The Center of Mobile Learning with Digital Technology and the autor Wigand Rathmann (https://en.www.math.fau.de/rathmann/) in the credits. */ var angle, v, friction, tFinal, curveN, // Sliders point, // Start point cf, cf2; // Curves const board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-5, 5, 5, -5] }); // Create some sliders to control the model angle = board.create('slider', [[1.1, 4.3], [3.1, 4.3], [0, 0.7, 1.57]], {name: 'angle'}); v = board.create('slider', [[1.1, 4.7], [3.1, 4.7], [0, 10, 10]], {name: 'velocity'}); friction = board.create('slider', [[1.1, 3.9], [3.1, 3.9], [0, 0.16, 2]], {name: 'friction', snapWidth: 0.05}); tFinal = board.create('slider', [[1.1, 3.5], [3.1, 3.5], [0, 5, 15]], {name: 'tEnd'}); curveN = board.create('slider', [[1.1, 3.1], [3.1, 3.1], [20, 100, 200]], {name: 'N', snapWidth: 1}); // Trajectory: // Initial point point = board.create('point', [-4, 0], { name: '(x_0,y_0)', color: 'red' }); // ODE for projectile var frk = function(t, x) { // Friction let y = [ x[2], x[3], 0 - friction.Value() * x[2] * x[2], -9.81 - friction.Value() * x[3] * x[3] ]; return y; }; // Forward solver using JSXGraph's Runge-Kutta algorithm. // Note: x[0] is x, x[1] is y, x[2] is \dot x, x[3] is \dot y var forwardSolver = function() { var I, x0; // Time interval I = [0, tFinal.Value()]; // Initial value x0 = [point.X(), point.Y(), v.Value() * Math.cos(angle.Value()), v.Value() * Math.sin(angle.Value())]; // Solve the ODE return JXG.Math.Numerics.rungeKutta('heun', x0, I, curveN.Value(), frk); }; // Create and update curve which approximates the trajectory with friction cf = board.create('curve', [[], []], {strokeWidth: 2}); cf.updateDataArray = function() { var i; // Solve ODE var data = forwardSolver(); this.dataX = []; this.dataY = []; // Copy ODE solution to the curve for (i = 0; i < data.length; i++) { this.dataX[i] = data[i][0]; this.dataY[i] = data[i][1]; } } // Show the analytic solution without friction cf2 = board.create('curve', [ (t) => v.Value() * Math.cos(angle.Value()) * t + point.X(), (t) => v.Value() * Math.sin(angle.Value()) * t - 9.81 / 2 * t * t + point.Y(), 0, () => tFinal.Value() ], { strokeWidth: 1, strokeColor: 'red' }); </jsxgraph>
// Define the id of your board in BOARDID var angle, v, friction, tFinal, curveN, // Sliders point, // Start point cf, cf2; // Curves const board = JXG.JSXGraph.initBoard(BOARDID, { axis: true, boundingbox: [-5, 5, 5, -5] }); // Create some sliders to control the model angle = board.create('slider', [[1.1, 4.3], [3.1, 4.3], [0, 0.7, 1.57]], {name: 'angle'}); v = board.create('slider', [[1.1, 4.7], [3.1, 4.7], [0, 10, 10]], {name: 'velocity'}); friction = board.create('slider', [[1.1, 3.9], [3.1, 3.9], [0, 0.16, 2]], {name: 'friction', snapWidth: 0.05}); tFinal = board.create('slider', [[1.1, 3.5], [3.1, 3.5], [0, 5, 15]], {name: 'tEnd'}); curveN = board.create('slider', [[1.1, 3.1], [3.1, 3.1], [20, 100, 200]], {name: 'N', snapWidth: 1}); // Trajectory: // Initial point point = board.create('point', [-4, 0], { name: '(x_0,y_0)', color: 'red' }); // ODE for projectile var frk = function(t, x) { // Friction let y = [ x[2], x[3], 0 - friction.Value() * x[2] * x[2], -9.81 - friction.Value() * x[3] * x[3] ]; return y; }; // Forward solver using JSXGraph's Runge-Kutta algorithm. // Note: x[0] is x, x[1] is y, x[2] is \dot x, x[3] is \dot y var forwardSolver = function() { var I, x0; // Time interval I = [0, tFinal.Value()]; // Initial value x0 = [point.X(), point.Y(), v.Value() * Math.cos(angle.Value()), v.Value() * Math.sin(angle.Value())]; // Solve the ODE return JXG.Math.Numerics.rungeKutta('heun', x0, I, curveN.Value(), frk); }; // Create and update curve which approximates the trajectory with friction cf = board.create('curve', [[], []], {strokeWidth: 2}); cf.updateDataArray = function() { var i; // Solve ODE var data = forwardSolver(); this.dataX = []; this.dataY = []; // Copy ODE solution to the curve for (i = 0; i < data.length; i++) { this.dataX[i] = data[i][0]; this.dataY[i] = data[i][1]; } } // Show the analytic solution without friction cf2 = board.create('curve', [ (t) => v.Value() * Math.cos(angle.Value()) * t + point.X(), (t) => v.Value() * Math.sin(angle.Value()) * t - 9.81 / 2 * t * t + point.Y(), 0, () => tFinal.Value() ], { strokeWidth: 1, strokeColor: 'red' });
This example is licensed under a Creative Commons Attribution ShareAlike 4.0 International License. Please note you have to mention The Center of Mobile Learning with Digital Technology and the author Wigand Rathmann in the credits.