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We present a set of algorithms for automated simplification of
symbolic constants of the form

∑
i αi xi with αi rational and xi

complex. The included algorithms, called SimplifySum2 and im-
plemented in Mathematica, remove redundant terms, attempt to
make terms and the full expression real, and remove terms using
repeated application of the multipair PSLQ integer relation detec-
tion algorithm. Also included are facilities for making substitutions
according to user-specified identities. We illustrate this toolset by
giving some real-world examples of its usage, including one, for
instance, where the tool reduced a symbolic expression of approxi-
mately 100 000 characters in size enough to enable manual manip-
ulation to one with just four simple terms.

© 2013 Published by Elsevier B.V.

1. Introduction

A common occurrence for many researchers who engage in computational mathematics is that
the result of a Computer Algebra System (CAS) operation, in say Mathematica or Maple, is a very
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long, complicated expression, which although technically correct, is not very helpful; only later do
these researchers discover, often indirectly, that in fact the complicated expression they produced
further simplifies, sometimes dramatically, to something much more elegant and useful. With some
frequency the CAS will provide no answer and may well ‘hang’. Such events are to be expected, given
the limitations of any symbolic computing package, for any of a number of reasons, including the
difficulty of recognizing when a given subexpression is zero.

Such instances are closely related to the problem of recognizing a numerical value as a closed-form
expression. In this case, researchers have used integer relation-finding algorithms, such as the PSLQ
algorithm and its variants (Bailey and Broadhurst, 2000), to express the given numerical value as a
linear sum of constants or terms. In both instances, researchers seek as simple a closed-form expres-
sion as possible. Such simplified closed-form expressions are highly desirable, both in mathematical
research and in problems, say, from mathematical physics. The various definitions and importance of
closed forms is described in Borwein and Crandall (2013), Chow (1999). Examples of such work are
described in Bailey et al. (2010b) and Borwein et al. (2010).

We present herein a software package SimplifySum for the simplification of symbolic constants
of the form

∑
i αi xi , where each αi is rational and each xi real or complex. Such constants frequently

arise in looking for closed forms for integrals or sums, and are frequently large and machine-generated
by symbolic mathematics software such as Mathematica or Maple.

Implemented in Mathematica, our package includes a focused set of tools for simplification of such
constants. The package is able to remove redundant constants, opposites and conjugates, symbolically,
numerically or both. It can simplify complex terms, which is useful if some xi are complex yet the
whole constant is real. The package uses symbolic algebra to repeatedly apply the multipair variant of
the PSLQ integer relation detection algorithm, and reduces expressions using exact, rational number
arithmetic. It also contains code to apply substitutions, so the user may specify identities or substitu-
tions they would like performed. These tools can be accessed through a convenient, simple function
interface. Users also have access to the individual functions that can thence be customized.

The criterion to decide which version of an expression is simpler is straightforward — a sum that
has fewer terms is simpler.2 All the algorithms (with the exception of substitution) only process the
rational coefficients αi , so an expression

∑m
i=1 αi xi is simpler than

∑n
i=1 βi xi if m < n. This is in

contrast to the general case discussed in Carette (2004), where the question of which version of a
general expression is considered and formalized. Because of the restriction to sums, our definition
is nearly always consistent with Carette’s formalism. In general, the package does not alter xi in
simplification, it only removes terms and alters the rational coefficients. Unless the new αi are very
complex, the resulting expression is simpler. Note that if the user requests substitutions (as described
in Section 3) then the substitution will be made regardless of whether this reduces or increases the
complexity.

The tools have proven quite effective. Many computer-generated constants have instances of the
simple redundancies described above. The techniques using integer-relations are general and reliable,
provided numerical results are used with appropriate caution. The substitutions allow the user to
apply specific identities automatically. This will allow them to use identities that arise repeatedly in
particular work, but are not in Mathematica.

Note also that the restriction to sums is very general — no limit is placed on each xi , only that it
must evaluate to a real or complex number, so each xi may be arbitrarily complicated. Each term will
be treated as a single constant by all parts of the code, with the exception of substitutions.

The remainder of the paper is structured as follows. In Section 2 existing literature on sim-
plification and simplification in current CAS is discussed. In Section 3 the general structure of
SimplifySum is described. Precise descriptions of the package are relegated to Appendix A. In Sec-
tion 4 we give a variety of illustrative examples, then conclude in Section 5 with timing and results
on some large research constants.

All tests were performed on a stock 2012 MacBook Pro with a 2.9 GHz Intel Core i7 processor and
8 GB of RAM using Mathematica 7.01.

2 For short expressions this may occasionally lead to less elegant presentation; for longer ones it seems highly desirable.
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2. Related literature and previous work

There are two central questions to consider when designing a simplification algorithm. First, what
does it mean for an expression to be simpler than another? Second, given a constant, what algorithms
can be applied to make the expression simpler?

2.1. Simplification in the literature

The paper (Carette, 2004) provides a formal description of simplification. The author discusses,
using ideas including Kolmogorov complexity and minimum description length, a method for defin-
ing whether a version of an expression is simpler than another. The author also discusses use of this
formalism to make practical decisions on simplification of particular expressions and discusses the re-
lationship of his formalism and the simplification algorithms included with Maple. Notably, the author
also discusses the lack of available literature, both on formalism and practical methods for simplifi-
cation: “But if one instead scours the scientific literature to find papers relating to simplification, a
few are easily found: a few early general papers . . . some on elementary functions . . . as well as pa-
pers on nested radicals . . . . Looking at the standard textbooks on Computer Algebra Systems (CAS)
leaves one even more perplexed: it is not even possible to find a proper definition of the problem of
simplification.”

Searching for methods of simplification reveals many older papers as mentioned in Carette
(2004). The papers (Buchberger and Loos, 1982; Casas et al., 1990; Caviness, 1970; Fateman, 1972;
Fitch, 1973; Moses, 1971) explore formalism and technique for simplification. The papers (Caviness
and Fateman, 1976; Zippel, 1985) discuss simplification techniques specific to expressions involving
radicals. The papers (Harrington, 1979; Hearn, 1971) discuss an earlier CAS called Reduce and some
associated algorithms. All of these provide relevant early discussions of the basic questions here, but
there have been dramatic advances in CAS systems and computing power since they were written.

For more modern techniques, there is a variety of literature on theoretical matters of simplifica-
tion, and much on simplification and resolution of specific types of expressions. We describe some
of this work. The work (Stoutemyer, 2011) describes the philosophy and goals of a practical, effec-
tive simplification algorithm, discussing many heuristics about correctly selecting branches, merits
of particular forms of various expressions and user control and interface. The papers (Bradford and
Davenport, 2002; Beaumont et al., 2003; Beaumont et al., 2004) primarily address simplification of
elementary functions in the presence of branch cuts, building on the earlier work (Dingle and Fate-
man, 1994), though none of these address practical issues associated with large expressions. The work
(Schneider, 2008) deals with a specific class of symbolic sums, in particular the question of finding
closed forms of sums dependent on a parameter, and Kauers (2006) approaches the same problem for
a more general class of symbolic sums. The work (Gutierrez and Recio, 1998) describes simplification
of highly specific expressions involving sines and cosines related to inverse kinematic problems. The
work (Monagan and Pearce, 2006) discusses simplification specific to rational expressions modulo an
ideal of polynomial rings. The work (Fateman, 2003) discusses how to check automatically that a pro-
gram is correct, and explores certain questions of automatic simplification that occur in the process.

2.2. Simplification in current CAS

Two of the most commonly used simplification routines are Mathematica’s Simplify and Full-
Simplify. The system is closed and proprietary; documentation of the algorithms is not available.
Empirically, Mathematica’s Simplify and FullSimplify tend to get “gummed up” when run on a very
large sum and become so slow they sometimes do not return results for over a day or ever. Neither
algorithm returns any intermediate updates, leading one to wonder after over a day if anything will
ever return. It is not clear why this is true or if there are effective, general ways to combat these
problems. Regardless, these routines were inadequate to simplify constants that arose in work such
as (Bailey et al., 2010b; Borwein et al., 2010).

In Maple (Maple, 2012) more documentation is available but the underlying issues remain. More
details are available about customization of the algorithms, and one can direct the CAS to focus on
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exponential, logarithmic or rational functions, or specify expressions in polar coordinates. Notably,
one may specify that the given expression is a constant not dependent on any parameters and is-
sue a preference for reducing the size of such an expression. In this context, the algorithms will also
look for possible cancellations involving the real and imaginary parts of complex subexpressions. The
algorithm also leverages numerical information, but the precise method of this is not stated. Some
information is given in the documentation on nesting strategies, but again, not enough to truly un-
derstand internals of the algorithms. There are also techniques for simplification using Maple’s identify
function, see Borwein et al. (2002). Based on a mixture of algorithms such as PSLQ and access to a
lookup table, identify is surprising successful when applied to floating point values of expressions.

The more recent package SAGE (Stein and et al., 2012), which is free and open source, relies on
another CAS called Maxima (Maxima, 2011) for simplification algorithms. Documentation for Maxima
describes routines for symbolic summation, simplification of rational functions, and various facilities
for user defined patterns. The SAGE and Maxima documentation do not state high level simplification
strategies, and the source code is difficult to follow.

It seems there is very little modern literature on how to build or implement a simplification rou-
tine for the case of a large, machine generated input constant. When one has a sum of the form
considered here, robustness in the presence of hundreds or thousands of terms is crucial. Moderate
scaling of runtime is not a problem, but scaling of runtime that leads the user to think nothing is
happening for hours on end is unacceptable. The SimplifySum toolset is designed to address these
concerns. By focusing on sums, we can employ such straightforward and effective algorithms.

In summary, we believe that the current package occupies a useful and previously unfilled space
among existing simplification packages and algorithms.

3. The ‘SimplifySum’ package

The package components are as follows, all four steps of which can be called separately.
(1) First, redundancy is explored. The code compares all pairs to remove redundant equalities,

opposites and complex conjugates. This O(n2) loop is robust at removing such elements, while more
generic approaches may miss such relationships or simply fail to function. The loop repeats until no
change is detected. Pseudocode is shown in Algorithm 1.

Algorithm 1 Removal of redundancy
1: repeat
2: for all pairs of indices i, j do
3: if (αi xi == α j x j) || (|αi xi − α j x j | < tol) then
4: αi = 2αi

5: Remove α j x j

6: end if
7: if (αi xi == −α j x j) || (|αi xi + α j x j | < tol) then
8: Remove αi xi and α j x j

9: end if
10: if (αi xi == α j x j) || (|re(αi xi − α j x j)| < tol && |im(αi xi + α j x j)| < tol) then
11: αi xi = 2re(αi xi)

12: Remove α j x j

13: end if
14: end for
15: until no change has occurred

The first comparison in each if statement is Mathematica’s built-in, symbolic equality. The second
is a numerical evaluation of the terms as written using built-in arbitrary precision arithmetic. The
parameter tol is set to 10−digits , where digits is user specified and has a default value 500.

The symbolic equality comparisons are in place because the user may wish to avoid numerical
comparisons. It seems unlikely that the symbolic equality case will pass, because Mathematica will
group terms automatically, but this does happen. We observed this behavior simplifying the con-
stant J (2), which is discussed in Section 5. The code includes switches to perform comparisons only
with the symbolic or numerical comparisons, as desired.
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Mathematica’s built in caching is used to avoid reevaluating expressions. The first loop usually
takes the majority of the time, since in the first evaluation no evaluations are cached.

There are algorithms that have a better asymptotic order, but the evaluation of each element is
much more costly than looping over the list. Additionally, this approach is more resistant to bugs. We
plan to explore approaches with a better asymptotic complexity in the future.

(2) Next are decomplexification routines to attempt to make constants real. The code looks for
terms that are stored as complex but have numerically zero imaginary part. These are converted to
real datatypes. This step is O (n). It then evaluates remaining complex terms and converts them to
real if their imaginary parts sum to zero. It removes them from the sum entirely if both the real and
imaginary parts sum to zero. This is unusual, but sometimes all the complex terms (not just their
imaginary parts) are extraneous results of a machine calculation. This is also O (n). Pseudocode is
shown in Algorithm 2.

Algorithm 2 Decomplexification
1: for i = 1:n do
2: if |im(αi xi)| < tol then
3: αi xi = re(αi xi)

4: end if
5: end for
6: Define E = {i: xi is complex}
7: if |im(

∑
i∈E αi xi)| < tol then

8: if |re(
∑

i∈E αi xi)| < tol then
9: Remove αi xi for i ∈ E

10: else
11: Set αi xi = re(αi xi) for i ∈ E
12: end if
13: end if

This routine does not look at arbitrary combinations of elements, only single elements and the
whole sum. Note that removal of conjugate pairs in Algorithm 1 is also decomplexification, and this
examines all pairs but not all subsets.

(3) The code then performs an integer-relation detection step, using the multipair PSLQ algorithm
(Bailey and Broadhurst, 2000) to remove dependent terms. Here we use the notation zi = αi xi for
clarity.

An integer relation algorithm takes a vector of real or complex numbers (z1, z2 . . . zn) and attempts
to find a nontrivial relationship

a1z1 + a2z2 + · · · + anzn = 0, (1)

where each ai is an integer. The multipair PSLQ algorithm, like any scheme for integer relation detec-
tion, must be performed using at least (nd)-digit precision, where d is the size in digits of the largest
of the coefficients ai , and n is the vector length. See Bailey and Broadhurst (2000) for details on the
multipair PSLQ algorithm.

If such a relationship is found, our code uses the simple identity

zi = −
∑

j, j �=i a j z j

ai
(2)

for some i such that ai �= 0 to remove zi from the expression.
The package repeatedly runs the multipair PSLQ algorithm to find relations. If a relationship is

found, a term is removed using Eq. (2), and then the algorithm is re-run, until no relations are found.
The scheme can be run on the entire expression, or some subset of the sum. The computer runtime
of this algorithm increases at least cubically with n, and even more rapidly if one takes into account
the higher precision needed for large n, so selecting a smaller subset is either essential or at least
beneficial in most cases.



D.H. Bailey et al. / Journal of Symbolic Computation 60 (2014) 120–136 125
Zero determination is treated separately. Instead of applying Eq. (2), the code will also check for the
fortunate circumstance that∑

i s.t.
ai �=0

zi = 0 (3)

or equivalently

ai ∈ {0,1} for all i. (4)

That is, some combination of terms in the original equation simply summed to zero. In this case
the appropriate zi are all removed. This is surprisingly common in practice with machine generated
constants. The problem of finding subsets which sum to zero is formally NP-Complete, see Lagarias
and Odlyzko (1985). PSLQ can frequently find such relationships, even despite the complexity of the
full formal problem.

Pseudocode for integer-relation detection is shown in Algorithm 3.

Algorithm 3 Integer relation detection
1: Select a subset of sum elements E and remove it from the sum
2: repeat
3: Run multipair PSLQ to detect an integer relation
4: if a relationship is found then
5: if ai ∈ {0,1} for all i then
6: Remove all zi such that ai = 1 (zero determination)
7: else
8: Apply Eq. (2) to remove a term from the sum
9: end if

10: end if
11: until no relationship is found
12: Replace the simplified E in the sum

There are three strategies to pick subsets of the sum on which to run multipair PSLQ. First, rela-
tionships are much more likely to be found between terms that have some mathematical relationship
with each other. Thus, the code examines subsets that are related according to user provided cate-
gories. For example, as in Section 5, one may wish to group all terms with logarithms in one category,
dilogarithms in another and so forth. If possible, this is the best strategy.

Another strategy is to make a randomized selection of terms. This may be effective when little
is known about the individual terms of the sum. If the user has enough knowledge to determine
categories a priori, then using that knowledge is more effective. The final strategy is to simply run
on adjacent blocks of the overall sum. This would seem less effective than randomized selection, but
experience has shown it is frequently better. Perhaps this is an artifact of another algorithm in the
machine generated test constants. By default the code splits the sum into blocks of 10, 20 then 50
adjacent elements of the sum. It can also run on adjacent blocks within categories.

By default, 500-digit arithmetic is used in the multipair PSLQ routine, and it is presumed that
an identity that holds to 500-digit arithmetic is in fact a true mathematical identity, even though
in a strict mathematical sense this cannot be guaranteed. If a higher level of certitude is desired,
the precision level can be increased. However, Mathematica handles rational coefficients with exact,
symbolic arithmetic. Thus, if the relationship is valid, there are no numerical errors made performing
this substitution.

Relationships with too large a Euclidean norm are thrown out. The value is user specified, with
a low default value of 105. If a relation has large coefficients, then applying the relation may cause
rational coefficients to get very large (in number of digits in the numerator and denominator). This
is the rare case discussed in the Introduction where growth in rational coefficients may increase the
complexity of an expression according to Carette’s formalism. This can be avoided by setting the
bound lower, but then more relationships will be missed.
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Note that all the relationships in Algorithm 1 could be found with multipair PSLQ. The disadvan-
tage is speed, since multipair PSLQ has significant overhead compared to adding or subtracting two
constants.

(4) The final portion of the code is a substitution package.
Mathematica uses objects called rules to perform a user specified substitution. The user specifies

two expressions, referred to as lhs and rhs in the Mathematica literature. When the rule is applied to
an expression, if a subpart of the expression matches lhs, it is replaced with rhs. The package applies
a list of rules to each term in the sum, as shown in Algorithm 4.

Algorithm 4 Substitution
1: for i = 1:n do
2: for all rules do
3: Apply rule to αi xi

4: end for
5: end for

This routine may or may not lead to simpler expressions. It follows the users request even if this
adds terms to the sum.

This makes O (nk) attempts at substitutions, where k is the number of rules provided. It operates
on individual terms of the sum to maintain robustness on very large sums. The Mathematica docu-
mentation pages have far more information on the use of such substitutions. This is in contrast to
built-in routines, which the Mathematica documentation says act on “every subpart of your expres-
sion”. Perhaps due to exponential growth in the number of terms in “every subpart” of a sum, the
built-in routine may run slowly. The routine here is strictly less powerful than the built-in substitution
package, but runs faster on large expressions.

The package does not include any rules by default, all must be user-specified. Examples are
included. Mathematica does not have any default rules, other than what may be in Simplify or Full-
Simplify.

Remark 1 (Disclaimer). This combination of procedures can be very effective at removing and simplify-
ing terms. The user must, however, be mindful to consider the difference between numerical matches
and true equality. Depending on the options used, numerical comparisons may be used repeatedly as
‘truths’ in this package. Such output must, of course not be taken as proof, only as experimental evi-
dence. But in many applications this may not matter, and in some others “knowledge is nine-tenths
of a proof”.

Remark 2 (Precision). In many simplification algorithms of this type, incremental precision is used.
We leave this decision to the user. If one is satisfied with 100 digit precision for redundancy checking
and decomplexification, these routines can be run at this level. Precision can then be increased to 500
or desired level for multipair PSLQ, which typically requires higher precision.

4. Examples

We now provide a few examples of the type of manipulations that the package can usefully
perform. Examples in this are run with the default configuration, using symbolic and numerical com-
parisons with 500 digit arithmetic. Table 1 compares performance and quality of simplification for
SimplifySum, Simplify and FullSimplify for all the examples in the section. These first examples are
small; full scale results are discussed at some length in Section 5.

Example 1 (Logarithms). The expression below contains six complex logarithms, some of which are
conjugates and some of which are linearly dependent. The constant is presented as
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Table 1
Performance on the four illustrative constants of Section 4.

Number of terms SimplifySum Simplify FullSimplify

constant n (original) n time (s) n time (s) n time (s)

C1 6 2 0.024 6 0.008 1 0.034
C2 8 2 0.048 4 0.031 2 0.403
C3 23 11 0.948 19 0.100 14 1803.373
I1 6 2 0.508 6 0.026 3 4.112

C1 := −1

8
iπ log2

(
2

3
− 2i

3

)
+ 1

8
iπ log2

(
2

3
+ 2i

3

)
+ 1

12
π2 log(−1 − i)

+ 1

12
π2 log(−1 + i) + 1

12
π2 log

(
1

3
− i

3

)
+ 1

12
π2 log

(
1

3
+ i

3

)
. (5)

Redundancy checking finds three conjugate pairs and removes them.

2re

(
−1

8
iπ log2

(
2

3
− 2i

3

))
+ 2re

(
1

12
π2 log(−1 − i)

)
+ 2re

(
1

12
π2 log

(
1

3
− i

3

))
. (6)

Integer relation detection finds the identity

8re

(
−1

8
iπ log2

(
2

3
− 2i

3

))
+ 12re

(
1

12
π2 log(−1 − i)

)
+ 6re

(
1

12
π2 log

(
1

3
− i

3

))
= 0.

(7)

The package applies it to obtain

2

3
re

(
−1

8
iπ log2

(
2

3
− 2i

3

))
+ re

(
1

12
π2 log

(
1

3
− i

3

))
. (8)

This in turn can be simplified by manually selecting the principal branch of log or using FullSimplify.
Of course, correctly selecting branches require care, so the code does not perform this particular

simplification unless an appropriate rule is set or calls to the Mathematica simplify functions are
made.

For comparison, Simplify removes zero terms and returns

1

24
π

(
2π

(
log(−1 − i) + log(−1 + i) + log

(
1

3
− i

3

)
+ log

(
1

3
+ i

3

))

− 3i

(
log2

(
2

3
− 2i

3

)
− log2

(
2

3
+ 2i

3

)))
. (9)

FullSimplify, however, correctly handles the branches and reduces to a single term.

− 1

48
π2 log(18). (10)

This illustrates a weakness of the package. FullSimplify has a wider selection of transformations. If it
is sufficiently fast, the results are better. Table 1 shows the number of terms obtained by Simplify and
FullSimplify. Timing on larger expressions shows that FullSimplify is frequently slow, as discussed in
Section 5.

Example 2 (Arctangents). To illustrate the problem consider the arctangent identity

π

2
− arctan(

√
5) = arctan

(
3 − √

5

4

)
+ arctan(

√
5 − 2),

which when expressed in terms of logarithms is
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1

2
i

(
log

(
1 − 1

5
i
√

5

)
− log

(
1 + 1

5
i
√

5

))
(11)

= 1

2
i

(
log

(
1 − 3

4
i + 1

4
i
√

5

)
− log

(
1 + 3

4
i − 1

4
i
√

5

))

+ 1

2
i
(
log(1 + 2i − i

√
5) − log(1 − 2i + i

√
5)

) + 1

4
i log

(
16 + (

√
5 − 3)2)

− 1

4
i log

(
16 + (3 − √

5)2) + 1

4
i log

(
1 + (2 − √

5)2) − 1

4
i log

(
1 + (−2 + √

5)2). (12)

Call (12), the right hand side of this identity, C2. If presented in just this form, the user or FullSim-
plify might well find the simplifications, but if through intervening steps the logarithms have been
rearranged and manipulated, or additional terms are added, all bets are off. Even if the expression is
found, runtime may increase drastically depending on the algorithms used. However, SimplifySum
is robust to these changes. Redundancy removal and decomplexification are not affected. Integer re-
lation detection may produce subtly different results. Because a particular element is removed, the
permutation may alter which element is removed. Also, if integer relation detection is run on a subset
of elements, some relations may be missed. If integer relation detection is run on the entire constant,
this is not an issue.

Here, SimplifySum reduces the right hand side to

2re

(
−1

2
i log

((
1 + 3i

4

)
− i

√
5

4

))
+ 2re

(
1

2
i log

(
(1 + 2i) − i

√
5
))

,

which can be further reduced to arccot(
√

5), which is equal to the original expression by complemen-
tary angles, with FullSimplify. FullSimplify returns the equivalent 1/4(π − arctan(4

√
5)).

Consider now the same expression with additional log terms for a total of 23 elements,
called C3 and shown in (13). Also, suppose that the elements were permuted randomly. Running
SimplifySum reduced the sum to 11 terms (all logarithms in this case) in 0.94 seconds. This is a
small runtime scaling compared to that of C2. Simplify reduces to 19 terms in 0.1 seconds, which
is fast but ineffective. FullSimplify successfully finds a relationship among the logarithms involving
arctangents (though not precisely the form above) and reduces the expression to 14 terms. How-
ever, it took 1803.4 seconds, or approximately 30 minutes to produce the result. This illustrates the
difficulties with FullSimpilfy under permutations or modest numbers of additional terms.

C3 := re

(
−1

4
log2

(
−1

3
+ i

)
log

(
1

3
− i

))
+ 2re

(
1

4
log

(
−1

3
+ i

)
log2

(
1

3
− i

))

+ re

(
−1

8
iπ log2

(
2

3
− 2i

3

))
− re

(
−1

8
iπ log2

(
1 − i

3

))
+ 2re

(
−1

8
iπ log2(1 − 3i)

)

+ re

(
−1

4
log

(
1

2
− i

2

)
log2(2)

)
− 2re

(
1

2
log(1 − 2i) log2(2)

)

− 4re

(
−1

4
log(1 − 3i) log2(2)

)
+ re

(
1

12
π2 log(−1 − i)

)
+ re

(
1

12
π2 log

(
1

3
− i

3

))

+ 2re

(
−1

2
log

(
1

3
+ i

3

)
log

(
1

3
− i

)
log

(
2

3
− i

3

))

+ 2re

(
1

2
log

(
1

3
− i

3

)
log

(
2

3
+ i

3

)
log

(
1 − i

3

))
+ 2re

(
1

4
iπ log(1 − 3i) log(2 − i)

)

+ re

(
1

4
log(1 − i) log(4) log

(
−

1 − 1√
2

−1 − 1√
2

))
+ log(2) log(4) log

(
−

1 − 1√
2

−1 − 1√
2

)

. . .
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− 1

2
i log

((
1 + 3i

4

)
− i

√
5

4

)
+ 1

2
i log

((
1 − 3i

4

)
+ i

√
5

4

)
+ 1

2
i log

(
(1 + 2i) − i

√
5
)

− 1

2
i log

(
(1 − 2i) + i

√
5
) + 1

4
i log

(
1 + (2 − √

5)2) − 1

4
i log

(
16 + (3 − √

5)2)

+ 1

4
i log

(
16 + (

√
5 − 3)2) − 1

4
i log

(
1 + (

√
5 − 2)2). (13)

Another technique is to apply FullSimplify to the reduced expression computed by SimplifySum.
This took 35.9 seconds and reduces the output to 8 terms. This illustrates another point — FullSim-
plify is a powerful routine, and sometimes the best result comes from applying SimplifySum and
FullSimplify in combination.

Elaborate integrands can arise in high-end use of computer algebra packages. Many of the fol-
lowing examples involve the polylogarithm Lin(z) := ∑

k�1 xk/kn of order n. (Note that Li1(x) =
− log(1 − x).)

Example 3 (Integrals I). Consider the following integral, which arose in connection to the integral K1
in Bailey et al. (2010a).

π/3∫
π/6

log

(
2 sin

(
x

2

))
dx. (14)

Mathematica evaluates the integral symbolically to

I1 := 1

144

(−144i
(
Li2

( 6
√−1

) − Li2
( 3
√−1

)) + 19iπ2

+ 12π
(
log(2) + 2 log

(
1 − 6

√−1
) − 2 log(

√
3 − 1)

))
. (15)

Here, Mathematica has produced complex subexpressions in evaluating an expression that is real. This
is but one simple example of this phenomenon that occurs regularly in computing integrals, including
the following examples. After applying SimplifySum, we have

re
(−iLi2

( 6
√−1

)) + re
(
iLi2

( 3
√−1

))
. (16)

In this case, the imaginary parts sum to zero and are removed, removing one term entirely. PSLQ
finds that three remaining terms sum to zero and are removed by zero determination. In contrast,
FullSimplify reduces the original expression to

1

16
i
(
16

(
Li2

( 3
√−1

) − Li2
( 6
√−1

)) + π2), (17)

which has the disadvantage that it appears complex (though is also real) and has one additional term.
We note that if the user or system is aware of the literature on logsine integrals or the Clausen

function, Cl2(θ) = Im Li2(eiθ ) (Borwein et al., 2012; Lewin, 1981), he or she will immediately re-
duce (16) to Cl2(π/3) − Cl2(π/6). The package does not make such substitutions automatically,
because this would move the simplification process to the general situation of Carette (2004). If de-
sired, the user can use the substitution package to apply them.

5. Results and performance

Our tools were initially developed for simplification of constants arising in previous work on
box integrals performed by Bailey, Borwein and Crandall. The paper (Bailey and Borwein, 2011) dis-
cusses the increasing importance and methodology of such experimental mathematics work. See
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Table 2
Performance on J integral constants of Section 5.

Constant n (original) SimplifySum Simplify FullSimplify

n time (s) n time (s) n time (s)

re( J (1)) 210 58 398.5 200 2.7 – –
J (2) 259 41 391.3 246 5.0 – –
J (3) (or K 5) 795 176 1341.2 516 46.7 – –
J (4) 889 181 1460.3 546 58.4 – –
J (5) 735 164 1337.3 496 41.5 – –
J (6) 889 162 1474.4 546 65.1 – –
J (7) 889 191 1623.3 538 60.9 – –

Bailey et al. (2010b) and Borwein et al. (2010) for much more detail on these integrals, their cal-
culation and relevance. A family of integrals crucial to this work is described next:

J (t) :=
∫

[0,1]2

log(t + x2 + y2)

(1 + x2)(1 + y2)
dx dy. (18)

Specification of t � 0 provides much more strenuous and interesting examples for this kind of simpli-
fication. As explained in Borwein et al. (2010), Borwein and Crandall (2013), for all algebraic t there
is in principle a hypergeometric evaluation of J (t). For t = 0 one may analytically obtain

J (0) = π2

16
log 2 − 7

8
ζ(3). (19)

For t = 1 the initial evaluation for this integral is 210 terms and 12 506 characters in Mathematica.
A more challenging constant is J (3), also referred to as K 5 in the literature (Borwein et al., 2010).

A computation in Mathematica returned 795 terms, most of which are complex, and 59 040 characters.
Our programs reduced this to 127 terms, all of which are real, and 11 539 characters.

We divided J (3) to segregate the terms with occurrences of the polylogarithm Lin(z), which ap-
peared of order n � 3. For instance, consider the terms from J (3) involving the trilogarithm (Li3).
These terms were extracted using the included function groupExpressionsByFunctionCategories. Before
simplification, we have 48 terms, all of which appear complex. After simplification, the result is a
much more manageable 13 real terms. Now at the very least, the expression is ‘human readable’. We
may note that these terms comprise mostly the real parts of complex terms. These can be further
simplified manually or using other simplification rules as will be discovered in Lewin (1981). As in
Example 1 dealing with complex logarithms, care must be taken to take appropriate branches of these
functions to get correct results. The final form may be examined in Borwein et al. (2010).

We observe that simple redundancies or branch issues such as illustrated in Example 3 can and
will replicate and grow unmanageably in large expansions such as the J integrals.

Table 2 shows the performance in speed and simplification in the J integrals. Simplification was
run numerically and symbolically using 500 digit arithmetic throughout. Sums were separated into
dilog, trilog, and default categories for integer relation detection. Each simplification was set to end
after one hour. The results show that SimplifySum has significant runtime scaling for large con-
stants. However, it never times out and continues to make reductions for very large expressions.
Simplify runs quickly, but doesn’t reduce the constant much. FullSimplify times out on all of these
examples. We ran FullSimplify for 24 hours on J (2), and still got no result.

Perhaps the most striking closed form this family of integrals is that of J (2), derived and discussed
in Borwein et al. (2010). This integral starts at about 889 elements and reduces to only four simple
terms:

J (2) = π2

8
ln(2) − 7

48
ζ(3) + 11

24
πCl2

(
π

6

)
− 29

24
πCl2

(
5π

6

)
, (20)

Cl2 is again the Clausen function Cl2(θ) := ∑
n�1 sin(nθ)/n2 (Cl2 is the simplest non-elementary

Fourier series). As in Example 3 it often arises and can be computed well from Cl2(θ) = Im Li2(eiθ ).
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This result came from three paper-length studies on these integrals. This needed all the tools
we subsequently developed and a great deal of careful insertion of extra information about real and
complex dilogarithms and trilogarithms, and their Clausen functions, as recorded in Lewin (1981). We
challenge the reader to explore the derivation of this formula using the included tools. Many of the
algorithms discussed here were developed when manually simplifying these constants.

6. Related work

Tools such as SimplifySum may also presage a future when mathematics-rich manuscripts can be
automatically (or at least semiautomatically) checked for validity. For example, we frequently check
and correct identities in mathematical manuscripts by computing particular values on the LHS and
RHS to high precision and comparing results—and then if necessary use software to repair defects.

Remark 3. In much of our related work, we ultimately generate a significant number of subtle for-
mulas which end up as tabular data in a paper. While the formulas start as output of algorithms
such as SimplifySum and are in principle symbolically correct and/or numerically validated identities,
we realized then in the process of transcription and prettifying, errors are always introduced. For
example in Bailey et al. (2010b), 200 formulas were collected, and 20 (or 10%) were found by our
LaTeX to Mathematica parser to be incorrect. A PSLQ based method was able to automatically correct
17 of these formulas. Of the remaining three, two were easy to debug by hand, while the final one
transpired to be humanly generated nonsense. We describe the methods below.

As an example, in a study of “character sums” we wished to use the following result derived in
Borwein et al. (2008):

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m − 1)(m + n − 1)3

?= 4Li4

(
1

2

)
− 51

2880
π4 − 1

6
π2 log2(2) + 1

6
log4(2) + 7

2
log(2)ζ(3). (21)

Here Li4(1/2) is again a polylogarithmic value. However, a subsequent computation to check results
disclosed that whereas the LHS evaluates to −0.872929289 . . . , the RHS evaluates to 2.509330815 . . . .
Puzzled, we computed the sum, as well as each of the terms on the RHS (sans their coefficients),
to 500-digit precision, then applied the multipair PSLQ algorithm. Multipair PSLQ quickly found the
following:

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m − 1)(m + n − 1)3

= 4Li4

(
1

2

)
− 151

2880
π4 − 1

6
π2 log2(2) + 1

6
log4(2) + 7

2
log(2)ζ(3). (22)

In other words, in the process of transcribing and ‘prettifying’ (21) into the original manuscript, “151”
had become “51”.

It is quite possible that this error would have gone undetected and uncorrected had we not been
able to computationally check and correct such results. While any such error may seem trivial, the
reliability and integrity of tables and of resources like the Digital Library of Mathematica Functions (Olver
et al., 2012) demand such errors be identifiable and correctible. The ability to correct may not always
matter, but it can be crucial.

We have largely automated these tools to validate and correct expressions, contained in a separate,
in progress package titled VerifyEquality. We describe our code and underlying heuristic in our
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final example, which arose in checking the paper (Bailey et al., 2010b) for accuracy. One integral
explored is

�4(−3) =
1∫

0

· · ·
1∫

0

(
(r1 − q1)

2 + · · · + (r4 − q4)
2)−3/2

dr1 · · · dr4 dq1 · · · dq4. (23)

This evaluates numerically to ≈ 8.40809. The final closed form of the expression was expressed in the
paper as

−128

15
+ 1

63
π − 8 log(1 + √

2) − 32 log(1 + √
3) + 16 log 2 + 20 log 3

− 8

5

√
2 + 32

5

√
3 − 32

√
2 arctan

(
1√
8

)
− 96Ti2(3 − 2

√
2) + 32G. (24)

Here G is the Catalan number and Ti2 is a generalized tangent value (another polylog) (Lewin, 1981).
To check the accuracy of this and many like formulas, the TEX sourcecode for the closed form was

imported into Mathematica. Using the import features is faster and less prone to transcription errors
compared to typing the closed form in Mathematica format. Then the formula itself was evaluated
numerically.

In this case, the expression evaluated to ≈ −8.2970, indicating an error. Multipair PSLQ was ap-
plied to the terms of the sum, which returned

−128

15
+ 16

3
π − 8 log(1 + √

2) − 32 log(1 + √
3) + 16 log 2 + 20 log 3

− 8

5

√
2 + 32

5

√
3 − 32

√
2 arctan

(
1√
8

)
− 96Ti2(3 − 2

√
2) + 32G. (25)

This expression evaluates to the correct numerical value, and so indicated a transcription error in the
coefficient of π , which changed from “ 16

3 ” to “ 1
63 ”. Such errors are common in human transcription

and in prettifying of machine-generated expressions, and so we seek to automate this process.
To accomplish this automation, VerifyEquality first imports the TEX sourcecode for an equa-

tion directly from the manuscript using the built in parser. (The file will need minor manual manip-
ulation to display an equality which can be parsed into sides that can be evaluated numerically.) The
values are computed and compared. If they do not numerically agree, then multipair PSLQ is run to
try to re-extract the true intended relationship. If this fails, the user is presented with the expression,
which can be manually checked for correct parsing. Then multipair PSLQ can be run again if desired.

A robust preliminary version is working, but it has some limitations. For example, certain functions
are not automatically interpreted correctly, especially those that are not part of built-in routines. And
differences in typing may cause unexpected parsing errors.

For example, in (24) the term “16 log 2 + 20 log 3” omits parentheses of the argument of the log-
arithms for readability. But the parser does not take this into account, and instead assumes that l,o
and g are variables. Upon import this expression becomes (16 · 2 + 20 · 3) · l · o · g . This error prevents
the tool from being able to repair the relation — e.g., by manually changing to log(2) and log(3).
But users cannot be expected to dig through parsed expressions to notice such errors. Thus, improv-
ing such facilities is a necessary goal for full publication of this work. A further goal is to be able
to automatically extract formulas from a paper, eliminating the need for users to manually annotate
TEX source files.
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Appendix A

A.1. Included files and building

Download the source (available from https://github.com/alexkaiser/SimplifySum). Open Simpli-
fysum.nb and evaluate all cells in the notebook. Two simple examples are provided in Exam-
ple.nb, and an example of using and writing rules is contained in RuleList.nb. Further examples
from this paper are included in ExampleConstants.nb and scripts to compare various simplifica-
tions are in TimingComparisons.nb.

A.2. Basic usage

The most basic usage of the functions is to call the supplied ‘wrapper’ function with its default
parameters unchanged. Name the constant that is to be simplified x. Then call

simplifySum[x]

This performs the following steps:

(1) Sets working precision to 500 digits.
(2) Removes terms that are equal, opposites or complex conjugates numerically and symbolically.

Performs the appropriate algebra symbolically to maintain equality to the original sum.
(3) Converts complex terms that are numerically real to real datatypes.
(4) Checks whether remaining complex terms sum to zero and deletes them if so.
(5) Checks whether the imaginary part of remaining complex terms sum to zero and makes them

real if so.
(6) Repeatedly runs PSLQ on adjacent terms of the sum, removing and replacing terms each time a

relationship is found. Removes all terms in the sum in the event of zero determination.
(7) Checks accuracy and print a summary between each major step.
(8) Returns the new expression.

A.3. Advanced usage

As shown below, the function simplifySum supports a number of optional arguments which can
be customized to perform the desired combination of simplifications. The function header is specified
as follows (the variables, types and their semantics are displayed in Table 3).

simplifySum[ sum_,
digits_ : 500,
evalNumerically_ : True,
evalSymbolically_ : True,
checkNumericalReals_ : True,
checkSumOfComplex_ : True,
runPslq_ : True,
categoryNames_ : False,
simplifyWithRules_ : False,
ruleList_ : False ]

Additionally, there are two global variables which are used. The first is outputLevel. If set
to 0, then no output besides warnings and errors is printed. If set to 1, then basic summaries of the
computation are printed at each major step. If set to 2, then more information about the sub-steps
of the computation is printed, in particular, progress of the redundancy checks and results of each
application of multipair PSLQ. This is useful to see that the code is still proceeding on in the case of

https://github.com/alexkaiser/SimplifySum
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Table 3
Variables, types and meanings.

Variable Type Meaning

sum Sum The sum to simplify.

digits Integer Number of digits of numerical precision.
Note that this must be large (300–500+) to run multipair PSLQ successfully.

evalNumerically Boolean Perform numerical comparisons for equality, opposites and conjugates.

evalSymbolically Boolean Perform symbolic comparisons for equality, opposites and conjugates.

checkNumericalReals Boolean Set complex terms with real part numerically zero to real.

checkSumOfComplex Boolean Remove complex terms if they sum to zero.
Make complex terms real if their imaginary parts sum to zero.

runPslq Boolean Run multipair PSLQ to simplify with integer relations.

categoryNames False If this variable is False, apply multipair PSLQ in adjacent blocks.
List of strings If this variable is a list of strings, separate the array to categories.

simplifyWithRules Boolean Apply the user supplied list of rules.

ruleList List of rules List of Mathematica rule objects to apply (or False if no rules).

a long computation. The second is $MaxExtraPrecision, which is set to the large value of 1000
and should not be altered without reason.

An illustrative code snippet follows:

Example 4 (Syntax). The following code was used to generate Example 1.

C1 = (1/12)*Pi^2*Log[-1 - I] + (1/12)*Pi^2*Log[-1 + I] +
(1/12)*Pi^2*Log[1/3 - I/3] + (1/12)*Pi^2*Log[1/3 + I/3] -
(1/8)*I*Pi*Log[2/3 - (2*I)/3]^2 + (1/8)*I*Pi*Log[2/3 + (2*I)/3]^2

digits = 350;
evalNumerically = True;
evalSymbolically = False;
checkNumericalReals = True;
checkSumOfComplex = True;
runPslq = True;
categoryNames = {"PolyLog[2,", "PolyLog[3,"} ;
simplifyWithRules = False;
ruleList = False;

simplifySum[ C1, digits, evalNumerically, evalSymbolically,
checkNumericalReals, checkSumOfComplex, runPslq,
categoryNames, simplifyWithRules, ruleList]

The variable ‘categoryNames’ is used to split the terms for application of multipair PSLQ. When used,
this variable is a list of strings. Each term in the sum will be converted to Mathematica InputForm,
then checked for substring matches with the terms in the list. Any function that doesn’t match any
supplied categories will be placed into a default category.

In this example, the categories are the ‘dilogarithm’ and ‘trilogarithm’, so those terms will each
have their own category, while all other terms such as ordinary logarithms or any other known con-
stants will be left in the default category.

The user should take care to consider name collisions, as a term will be placed only in the first
match found or the default.
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A.4. Final comments

The user may also wish to call the functions individually. Each function has its usage is docu-
mented in its opening comments. Illustration of how to call individual functions is included with
function ‘simplifySum’.

Remark 4 (Simplification rules). If it is desired to simplify using or more user-defined rules, a function
that applies those rules to each term in the sum is included. Recall that a Mathematica rule takes the
following form:

old_expression :> new_expression /; condition

The condition parameter is optional.
One should consult the examples included with our package or Mathematica’s own documentation

on rules for more detail. As mentioned in Section 3, the code here applies rules to each element of
the sum individually. If rules that effect more than one term in a sum are desired, then use the built
in functions which operate on more levels of the subexpressions.

That said, Mathematica does not divulge much in the way of documentation on its source code.
A direct request for more detail led to the response below:

“The general idea behind the Simplify and FullSimplify heuristics is that they apply a sequence of
transformations, keeping the version of the expression that has the smallest complexity found so
far. This process is repeated at all subexpression levels.

There are a few thousand of transformations used (of course most of the transformations ap-
ply to relatively narrow classes of expressions). We do not have documentation describing the
transformations or the exact structure of the Simplify and FullSimplify heuristics.”

An implementation in Maple or SAGE would thus be much more flexible.
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