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a b s t r a c t

This article provides goals for the design and improvement of de-
fault computer algebra expression simplification. These goals can
also help users recognize andpartially circumvent some limitations
of their current computer algebra systems. Although motivated by
computer algebra, many of the goals are also applicable to manual
simplification, indicating what transformations are necessary and
sufficient for good simplification when no particular canonical re-
sult form is required.

After motivating the ten goals, the article then explains how
the Altran partially factored form for rational expressions was
extended for Derive and for the computer algebra in Texas In-
struments products to help fulfill these goals. In contrast to the
distributed Altran representation, this recursive partially factored
semi-fraction form:

• does not unnecessarily force common denominators,
• discovers and preserves significantly more factors,
• can represent general expressions, and
• can produce an entire spectrum from fully factored over a

common denominator through complete multivariate partial
fractions, including a dense subset of all intermediate forms.
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First, an explanation for the title: the current obedience to these commandments among computer
algebra systems is low enough so that ‘‘goals’’ is a more accurate word than ‘‘commandments’’.
However, with apologies to the author of the original Ten Commandments, these goals are called
commandments in the title because:

• Moses (1971) is cited in this article,
• ten years later he reappeared in Biblical garb at a computer algebra conference (Moses, 1981a,b),
• hewas present at theMilestones in Computer Algebra conferencewhere a preliminary form of this

Ten Commandments article was presented (MICA, 2008).

Computer algebra programs such asMathPertTM Beeson (1998) and the Texas Instruments Student
Math Guide program (TI, 2003) help teach mathematics by having students choose a sequence
of elementary transformations to arrive at a result. The transformations can be as elementary as
combining numeric sub-expressions, applying 0 and 1 identities, sorting factors or terms, combining
similar factors or terms, subtracting an expression from both sides of an equation, or applying a
specific differentiation rule. With such step-oriented derivational systems, the goal is a well-chosen
path having several steps at an appropriate tutorial granularity. The interactive interface is oriented
around producing and displaying a sequence of equivalent expressions annotated by rewrite rules
selected from a context-dependent menu by the user. MathPert and Derive also have a ‘‘show me’’
mode wherein the system automatically chooses and displays a sequence of annotated steps — either
uninterrupted or one step per press of the [Enter] key.

In contrast, for result-oriented computer algebra systems the overall goal is a satisfying final result
in as few steps as possible — preferably one step. The interface is typically oriented around a sequence
of input–result pairs. With some changes for annotation, a result-oriented interface could be a special
one-step case of the step-oriented interface.

Default simplification means what a computer algebra system does to a standard mathematical
expressionwhen the user presses [Enter],1 using factory defaultmode settings, without enclosing the
expression in an optional transformational function such as expand(. . .), factor(. . .), or simplify(. . .).
Default simplification is the minimal set of transformations that a system does routinely.

Computer algebra users generally expect some transformationwhen they press [Enter]. Otherwise
they already have the desired result and need at most a system for 2D input and display of mathe-
matical expressions. For example, if the input expression contains an unevaluated integral, most often
users want to have the corresponding result be a closed-form equivalent. Otherwise, in the absence of
a transformational function such as expand(. . .) or factor(. . .), users have not indicated a strong pref-
erence for any particular form. However, users presumably want the result simpler than the input if
that is possible, but not unnecessarily changed beyond that.

Section 2motivates and presents ten goals that are applicable to this most common case of default
simplification.

Section 3 describes how the recursive partially factored form in Derive and in the separate
computer algebra in TI-CAS2 helps meet some of these goals.

Section 4 describes how the form is further extended to partial fractions and to intermediate forms
to further meet some of these goals.

Appendix A describes further details for semi-fractions.
Appendix B describes further details for ratios of polynomials.
Appendix C describes additional issues for fractional exponents.
Appendix D describes additional issues for functional forms.

1 [Shift] [Enter] forMathematica r⃝ .
2 The computer algebra embedded in the TI-92, TI-89, TI-Interactive, TI-Voyage 200 and TI-Nspire (TI, 2009) has no official

generic name. Therefore it is referred to here as TI-CAS.
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2. What should we want from default simplification?

Everything should be made as simple as possible, but not simpler.
— Albert Einstein

Nothing is as simple as we hope it will be
— Jim Horning

2.1. Correctness is non-negotiable

Definition 1. The problem domain for an expression is the Cartesian product of the default or user-
declared domains of the variables therein, as further restricted by any user-supplied equalities and/or
inequalities.

To determine a concise result within the problem domain, we can use transformations that are not
necessarily valid outside that domain. For example, some transformations that are valid for all integers
or for all positive numbers are not valid formore general real numbers, and some transformations that
are valid for all real numbers are not valid for all complex numbers.

Also, there might be some points in the problem domain where some users regard an expression
as being undefined. For example, some users regard non-real values as undefined, at least in some
contexts such as when computing limits of real expressions along the real line. The points where
an expression and all of its sub-expressions are real can be described by a Boolean expression that is
true for those points and false otherwise.3 Here are some of the rewrite rules that can define such an
isReal(. . .) function4:

isReal(number) → number ∈ R,

isReal(variable) → variable ∈ R ∨ ℑ (variable) = 0,
isReal(|u|) → isReal(u),
isReal(

√
u) → isReal(u) ∧ u ≥ 0,

isReal(ln u) → isReal(u) ∧ u ≥ 0.

If the function returns true, then the expression and all of its sub-expressions are real for all
combinations of values of the variables therein. If the function returns false, then the expression or
some sub-expression is non-real for all combinations of values. Otherwise the function returns a
conditional expression such as, for the default domain of variables being complex,

isReal (w + arcsin |z|) → ℑ(w) = 0 ∧ −1 ≤ z ≤ 1.

If desired,we can thenuse isReal to define a domainOfRealness(. . .) function that returns, for example,
the set

{w ⊗ z | ℑ(w) = 0 ∧ −1 ≤ z ≤ 1} .

Most computer algebra systems represent and correctly operate on ∞, −∞, and various complex
infinities. Even 0/0 is representable as the real interval [−∞, ∞] or the rectangular complex interval
[−∞ − ∞ i, ∞ + ∞ i], depending on the problem domain. Nonetheless, many users regard at least
some of these as undefined, at least in some contexts, such as solving equations in secondary school

3 Most users who consider non-real results undefined also consider an expression undefined if it contains any non-real sub-
expression, even if the result is real. It seems to me foolishly restrictive to insist that all proper sub-expressions be real, but this
is what most mathematics educators want at the pre-complex-variable level, and ‘‘the customer is always right’’.
4 The ‘‘≥’’ in the rule for ln should be changed to ‘‘>’’ if you define ln 0 as the interval −∞ + (−π, π]i rather than the more

usefully unique −∞.
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and somewhat beyond, where ∞ and −∞ unfortunately are not regarded as solutions of 1/x = 0.
Here are some of the rewrite rules that can define an isFinite(. . .) function:

isFinite(∞) → false,
isFinite(ln(u)) → isFinite(u) ∧ u ≠ 0,

isFinite(uv) → isFinite(u) ∧ isFinite(v) ∧ (u ≠ 0 ∨ v > 0) .

Many users also regard non-unique values such as ±1 and sin(∞) as undefined – at least in some
contexts such as being the result of a limit – even thoughwe can represent themas the interval [−1, 1]
and the multi-interval ⟨−1, 1⟩ or set {−1, 1} respectively. Here are some of the rewrite rules that can
define an isUnique(. . .) function:

isUnique(±u) → isUnique (u) ∧ u = 0,
isUnique(sin(∞)) → false,
isUnique(number) → true,
isUnique(variable) → true,

isUnique(u + v) → isUnique(u) ∧ isUnique(v).

Computer algebra systems should provide these three functions and an easy way to specify
what Boolean combination of them should redefine a default isDefined(. . .) function. For example,
educators could use

isUnique(u) ∧ isReal(u)

when teaching limits along the real line, or

isUnique(u) ∧ isFinite(u)

when teaching complex arithmetic, or

isFinite(u) ∧ isReal(u)

when teaching the finite real solutions of equations.5
In contrast an advanced researcherwho believes that everything is defined could use true, whereas

one who believes that everything but ±∞ and infinite intervals are defined could use

isUnique(u) ∨ isFinite(u).

The default definition should please the largest possible subset of the users as often as possible
for the particular computer algebra system.6 The isDefined (. . .) function is needed to implement the
first three goals below, and all four functions are useful to implementers and users in other ways too.

It will not always be possible to simplify the resulting Boolean expression perfectly. For example,
it might be a complicated expression that is equivalent to true. However, such results are still correct,
and will usually evaluate to either true or false when ground-domain values are substituted for the
indeterminates therein.

Definition 2. The domain of equivalence of two expressions is the domain for which they give
equivalent values when ground-domain elements are substituted for the variables therein.

Goal 1 (Equivalence where defined). Default simplification should produce an equivalent result
within the intersection of the problem domain and the domain of definition.

Some transformations can yield expressions that are not equivalent everywhere. For examplewith
the principal branch, 1/

√
z −

√
1/z is equivalent to 0 everywhere in the complex plane except where

5 It is not surprising that students and educators are confused by the changing definition for domain of definition!
6 The session startup could offer a ‘‘Consider undefined’’ dialog box with check boxes labeled

√
−1, ∞, ±1, etc.
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arg(z) = π . Along arg(z) = π the expression is equivalent to 2/
√
z. Therefore transforming the

expression to either result would incorrectly contract the domain of equivalence in the problem
domain unless the input includes a constraint that implies one of these two results.

One cruel way to achieve equivalence is to leave the relevant sub-expression unchanged until the
user realizes that an appropriate constraintmust be attached to the input, then does so. Unfortunately,
many users will fail to realize this, and they will judge the system unfavorably as being incapable of
the desired transformation.

In an interactive environment, a more kindly route to correctness and favorable regard is for the
system to ask the user whether or not arg(z) = π , then automatically append a corresponding
constraint to the user’s input and do the corresponding transformation. If interested, the user can
repeat the inputwith a different combination of replies to obtain another case of the complete general
result.

Unfortunately the query might end up being unnecessary. For example, the sub-expression might
be multiplied by another sub-expression that subsequently simplifies to 0. If so, users who are
conscientious enough to repeat the inputwith the opposite constraint or reply are likely to be annoyed
about being pestered with irrelevant questions. On the other hand, users who do not try the opposite
constraint or reply might falsely conclude that the result is not equivalent to the input without the
constraint.

Also, this method can be baffling to a user if the question entails a variable such as a Laplace
transform variable that is generated internally rather than present in the user’s input. In such
situations and for non-interactive situations, an alternative treatment is for the system to assume
automatically the reply that seems most likely, such as arg(z) ≠ π , then append the corresponding
constraint to the user’s input before proceeding. Thus notified of the assumption, the user can then
edit the input to impose a different assumption if desired.

A more thorough method, which does not require interaction or risk disdain, is for the system to
develop a piecewise result equivalent for all z, such as

1
√
z

−


1
z

→


2

√
z if arg z = π,

0 otherwise.

Corless and Jeffrey (1992) give additional examples for these alternative treatments.
As another example, many algorithms factor out the leading coefficient for monic normalization,

such as

cx + 1 → c

x +

1
c


.

The left side is defined at c = 0, but the right sided is not. A way to overcome this little known
disadvantage of monic normalization is the piecewise expression

cx + 1 →


1 if c = 0,
c

x +

1
c


otherwise.

A better way to overcome this disadvantage is to avoid monic normalization when possible in favor
of better alternatives such as primitive normalization.

Quite often users are interested in only one of the alternatives, which they can then obtain by
copying and pasting or by resimplifying the input or result with an appropriate input constraint.
However, such piecewise results can become combinatorially cluttered when combined, so there
is still a place for a ‘‘query and modify input’’ mode. These considerations are summarized in the
following corollary to the first goal:

Goal 2 (Contraction prevention). If necessary for equivalence within the intersection of the
problemdomain and the domain of definition, a result should be piecewise or the system should
append an appropriate constraint to the input, preferably after querying the user.
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2.2. Managing domain enlargement

Some transformations can yield results that are definedwhere the input is undefined. For example,
as persuasively argued in Graham et al. (1989) and Kahan (1987), the modern trend is to define 00 as
1. However, many users still regard 00 as undefined on account of being non-unique, non-finite and/or
non-real. Thus for them the transformation u0

→ 1, hence also

uα

uβ
→ uα−β

for α ≥ β enlarges the domain of definition wherever expression u = 0. The enlargement is a benefit
rather than a liability because:

• unlike the input, the result does not suffer catastrophic cancellation for u near 0,
• defining a unique value at u = 0 turns a partial function into amore desirable total function, and the

value given by the reduced ratio there is the best choice, because it is the unique omni-directional
limit of the input as u → 0,

• removable singularities are oftenmerely a result of an earlier transformation or amodeling artifact
that introduced them. For example, perhaps they are a result of a monic normalization or being at
the pole of a spherical coordinate system,

• the phrase ‘‘removable singularities’’ implies permission to remove them,
• Goal 1 neither forbids nor requires equivalence outside the intersection of the problem domain

with the domain of definition. Therefore transformations that enlarge the domain of definition
make the result better than equivalent.

However, there are vocal critics of such gratuitous improvements — particularly at the lower levels
of the mathematics curriculum. To appease these critics, there should be a mode they can activate
to force the result to be undefined wherever the input is undefined according to their definition of
undefined, but still obtain the transformation:

Goal 3 (Optional enlargement prevention). Results should optionally include appropriate
constraints if necessary to prevent enlarging the domain of definition within the problem
domain.

For example,

z (z − π)

z − π
→ z | z ≠ π.

However, there is no need for such a constraint if enlarging the domain of definition of a sub-
expression does not enlarge the domain of definition for the total result. For example,

z (z − π)

z − π
+

1
z − π

→ z +
1

z − π
.

One alternative is to append ‘‘| isDefined(input)’’ to the result. However, it is sufficient and
often more concise to omit constraints where the result is also undefined. For example, if
isDefined(input) → x ≠ 0 ∧ x ≠ 1, whereas isDefined(result) → x ≠ 0, then it is sufficient
for the result to include ‘‘| x ≠ 1’’.

Complaints about domain enlargement are an unfortunate consequence of the historical emphasis
on equivalence throughout the entire problem domain rather than merely its intersection with
the domain of definition. Convenient notations and phrases might help evolve enthusiasm for
domain enlargement. Using dod (. . .) for domainOfDefinition (. . .), Table 1 lists three proposed
transformational operators that are easily constructible in LATEX. For example,

z (z − π)

z − π

:)
→ z.
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Table 1
Notation for changes in dod(. . .) = domainOfDefinition(. . .)

Operator Can be read as Definition

A
:)
→ B A improves to B dod(A) ⊂ dod(B)

A
:)
⇒ B A transforms to or improves to B dod(A) ⊆ dod(B)

A
:(
→ B A degrades to B dod(A) ⊃ dod(B)

2.3. Protecting users from inappropriate substitutions

Seek simplicity, and distrust it
— Alfred North Whitehead

As a corollary to Murphy’s law, someone will eventually apply any widely used result outside
the domain of equivalence to the inputs, unless explicitly prevented from doing so or unless the
result is universally valid. For example, as discussed by Jeffrey and Norman (2004), most publications
containing the Cardano solution of a cubic equation do not mention that his formula is not always
correct for non-real coefficients. Consequently this formula has been misused by many people,
including some computer algebra implementers, such as me. The consequences can be disastrous.

To prevent the use of a result outside its domain of equivalence, constraints attached to the input
either initially or in response to queries or automatic choices by the system should also be propagated
to the result, where they can be combined with any optional domain-enlargement constraints.

Result constraint expressions should be simplified as much as is practical, to make them more
understandable. We can omit a constraint if it simplifies to true. If it instead simplifies to false, then
the result is undefined everywhere in the problem domain, so we can then simplify the result to the
representation for ‘‘undefined’’.

Perfect constraint simplification can be quite difficult or undecidable, but perfection is not manda-
tory. The purpose of the constraint is to return the representation for ‘‘undefined’’ if a substitution
makes the Boolean constraint simplify to false. Otherwise the result is that of the substitution, with
a more specialized attached constraint when it does not simplify to true or false. A result of the form
expression|BooleanConstraint is still correct even if the constraint could be simplified to true or to false
but was not.

For safety, the output constraint should indicate the basic domain of every variable in the output
expression. This can be done by including type constraints of the form variable ∈ domain. However,
to reduce clutter, the types of variables can often be inferred from constraints. For example, the
constraint x ≥ 0 implies x ∈ R. In such cases we can omit a type constraint for x if it is not a more
restricted type such as integer. Also, if one type such asC includes all other possible declared or default
numeric types, then declarations of that type can be omitted if arithmetic or comparison operators
imply that the variable is numeric.

Despite such economies, constrained results can become distractingly cluttered. Therefore, the
default could be to represent any complicated or routine portions of a constraint with an ellipsis that
could be expanded by clicking on it. Moreover, there could be an option to hide output constraints.
However, they would still be internally attached to results to ensure safe substitutions within the
computer algebra system. The constraints would also at least encourage safe substitutions if included
whenever a result is copied for pasting outside the system.

Goal 4 (Domain propagation). Domains and constraints should be propagated into results,
where they then cause substitution of inappropriate values to return the representation for
undefined.

2.4. Disabling default transformations

Simplicity is in the eye of the beholder
– adapted from Margaret Wolfe Hungerford
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Nomatter howmodest the set of default transformations, many mathematics educators wish that
some of them could be selectively disabled sometimes. At these times, such users would be better
served by a step-oriented system.However, even for research or the exposition thereof, we sometimes
want to disable transformations that we most often want as default. For example, many users might
prefer 29999 to the 3010 digits of the decimal form.

As another example, combining numeric sub-expressions in the coefficients of a truncated power
series can mask revealing patterns such as in

1
2
x0 +

1·3
2·4

x2 +
1·3·5
2·4·6

x4 + o(x4) versus
1
2

+
3
8
x2 +

5
16

x4 + o(x4),

where x0
:)
→ 1 is also disabled.

As another example, even though this article is in a research journal rather than an educational
textbook, about 30% of the examples using ‘‘→’’ in this article are multi-step derivational.

We want to do this stepping in the same software environment that we use for result-oriented
computer algebra. Therefore, a compassionate expression simplifier allows selectively disabling such
default transformations. Although users should be offered complete control over which transforma-
tions are disabled, a menu could also offer commonly desired combinations such as enabling only
arithmetic, only arithmetic together with 0 and 1 identities, etc.

Goal 5 (Optionally disable default transformations). It should be possible to selectively disable
default transformations.

Each Goal is subject to the constraints of all previous goals. For example, disabling default trans-
formations should not compromise the goal of equivalence where the input is defined.

The necessary expression representation and algorithms to support thorough disablement of
default transformations are so different from what is best for high-performance result-oriented
computer algebra that it is best to implement transformation disablement as a mode that switches
to a different data representation and simplifier. For example:

• fine-grain syntactic control or teaching the laws of signs requires internal representation of
negation and subtraction of terms, whereas performance-oriented simplification typically forces
signs into the numeric coefficients so that cases for negation and subtraction do not have to be
implemented except in arithmetic. A post-simplification pass typically restores subtractions and
negations for display,

• similarly for division versus multiplication by a negative power,
• teaching the rules for deleting superfluous parentheses requires that they are representable in the

step-mode internal representation,
• fine-grain syntactic control or teaching trigonometry requires internal representations of all the

trigonometric functions and their inverses. In contrast, converting them all internally to a lean
subset such as sines, cosines, inverse sines and inverse tangents automatically accomplishes many

desirable transformations, such as tan θ cos θ
:)
→ sin θ and arcsin x + arccos x

:)
→ π/2. Even if

absent in the internal representation, tangents, inverse cosines etc. can often be restored for display
either optionally or by default when it makes a result more compact,

• similarly for fractional powers, versus square roots, cube roots etc. For example, allowing students
to choose an appropriate transformation to simplify

√
2 − 21/2 requires separate internal

representations for square roots and fractional powers, which is an unnecessary complication to
handle thoroughly for automatic result-oriented simplification.7

When default transformations are disabled, it is more appropriate to have the interface switch
from result mode to a step mode. However, it is important that results obtained in either mode be
thoroughly accessible in both modes — that is the reason for wanting both modes in a single product.

7 Unfortunately, a large portion of math education is devoted to contending with our many interdependent functions and
redundant notations rather than learning genuinely new concepts!
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2.5. We want candid forms

Cancellation is key.

A particularly important goal of simplification is to simplify to 0 any expressions that are
equivalent to 0. This can be guaranteed for sufficiently simply classes of expressions, including rational
expressions.

However, we want more than this: we would more generally like to have simplification eliminate
all variables upon which the expression does not really depend, which includes simplifying to a
number all expressions that are equivalent to a number. Moreover, we would like to eliminate
superfluously large degrees and de-nest irrationalities as much as possible.

Definition 3. A candid expression is one that is not equivalent to an expression that visiblymanifests
a simpler expression class.

A candid form is ‘‘What You See Is What It Is’’ (WYSIWII).

Definition 4. A misleading expression is one that is not candid.

These are actually qualitativemeta-definitions that requires specific details for specific expression
classes. For example, for multivariate rational expressions, one rather generous set of sufficient
conditions for a candid expression is:

• there are no compound ratios,
• all ratios that occur are reduced,
• the factors and terms are ordered in an easily discerned traditional way, such as lexically by

descending degree,
• all manifestly similar factors and terms are collected,
• for each variable, the actual degree of every variable in a reduced ratio of an expanded numerator

and denominator would be no less than what a user would predict assuming no cancellations. For
example, assuming no cancellations, we can predict that at most the degree of x will be 3 in the
denominator and 6 in the numerator when

x3 +
1

x2 − 1
+

1
x + 2

is reduced over a common denominator. Those are the resulting degrees, so this expression is
candid.

There can be other candid forms for rational expressions, including continued fractions. However,
the complexity of implementing a candid simplifier increases with the permissiveness of the allowed
result forms.

Misleading expressions masquerade as something more complicated than necessary. Try entering
the following examples on your computer algebra systems to see if their default results aremisleading.
If so, how many optional transformations did you have to try to obtain a candid result?

• Expressions that are equivalent to 0 but do not automatically simplify to 0. For example,

f ((x − 1)(x + 1)) − f

x2 − 1


.

• Expressions that contain superfluous variables. For example,

2 sinh (x) − ex + e−x
+ ln (y) , which is equivalent to ln (y) .

• Apparently irrational expressions that are equivalent to rational expressions. For example,
√
z + 1

√
z(z +

√
z)

, which is equivalent to
1
z
.
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• Irrational expressions that are equivalent to other irrational expressions containing less nested and/or
fewer distinct irrationalities. For example,

sin (2 arctan(z)) +


15

√
3 + 26

1/3
, which is equivalent to

2z
z2 + 1

+
√
3 + 2.

• Non-polynomial expressions that can be improved to polynomials. For example,

x2 − 1
x − 1

, which improves to x + 1.

• Expressions that contain exponent magnitudes larger or smaller than necessary. For example,

(x + 1)2 − (x − 1)2 +
y2 − 1

y2 + 2y + 1
, which is equivalent to 4x +

y − 1
y + 1

.

• Expressions that mislead us with disordered terms or factors. For example,

x16 + x15 + x14 + x13 + x17 + x11 + x10 + x9 + x8 + x2 + x6 + x5 + x4 + x3.

One could easily assume that this is a degree 16 polynomial having a minimum exponent of 3.
Worse yet, imagine the unlikeliness of noticing otherwise if the expressionwas several pages long,
including several variables and lengthy coefficients. Complying with the traditional ordering for
commutative and associative operators described by Moses (1971) greatly aids comprehension.

• Expressions that contain i or a fractional power of−1 but are actually real for real values of all variables
therein. For example,

i ((3 − 5i) x + 1)
((5 + 3i) x + i) x

, which improves to
1
x
.

• Non-real expressions that have a concise rectangular or polar equivalent but are not displayed that way.
For example,

(−1)1/8
√
i + 1

23/4
+ ieiπ/2, which is equivalent to −

1
2

+
i
2
.

Most users can easily envision a useful geometric image only for rectangular and polar represen-
tations of either the form (−1)α or eiθ .

• Expressions that mislead about important qualitative characteristics such as frequencies, discontinu-
ities, symmetries or asymptotic behavior. For example,

sin (4θ)

cos (2θ)
,which improves to 2 sin(2θ).

• Boolean combinations of equalities and inequalities that can be expressedmore succinctly. For example,

((x > 3 ∧ ¬ (x ≤ 5)) ∨ x = 5) , which is equivalent to x ≥ 5.

Most computer algebra systems fail most of the above default-candidness tests.8

For expressions that are not candid, we can consider how non-candid they are. For example, if an
input expression is simplified to eliminate one of its two superfluous variables, that non-candid result
ismore nearly candid in this regard than the input expression. It is important for default simplification
to be as nearly candid as is practical because:

8 Many computer algebra systems cannot compute candid results for some of these examples even with the help of all their
optional simplification and transformation functions.
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• the consequences of misleading intermediate or final results can be ruinous: not recognizing that
an expression is equivalent to 0 or is free of a certain variable or is a polynomial of a particular
degree can lead to incorrect matrix pivot choices or lead to incorrect or thwarted limits, integrals,
series, and equation solutions. For example, does the default and optional simplification of your
computer algebra systems incorrectly simplify the following expression to 0 rather than the
representation for ‘‘undefined’’?

y − y
x2 + x − x (x + 1)

,

• the need for identifying such properties occurs in too many places to require implementers and
users to unfailingly employ a simplify(. . .) function at all of them: almost every conditional
statement in a computer algebra algorithm tests for some property of an expression. If the property
is not recognized, then an incorrect alternative will be selected or the algorithmwill unnecessarily
indicate that it cannot do that integral, limit, etc.

• if wewant a candid result, the easiestway to implement that is to use bottom-up simplification and
have every intermediate result be candid.9 Being able to rely on candid operands greatly reduces
the number of cases that must be considered,

• a simplify(. . .) function probably entails at least one extra pass over the expression after default
simplification, which wastes time, code space and expression space compared to making the first
pass give a candid result. This can make simplification exponentially slower if simplify(. . .) is
used in a function that recursively traverses expression trees. Such recursion is so ubiquitous in
computer algebra that this performancepenalty precludes using simplify(. . .) inmanyof the places
that it would be needed to achieve candid results.

In nontrivial cases it is impractical for a single form to reveal all possibly important features of a
function. Therefore it is unreasonable to insist that a candid form reveal all such features. However, a
candid form at least should notmislead us about those features.

Goal 6 (Candid results). Default simplification should produce candid results for rational ex-
pressions and for as many other classes as is practical. Default simplification should try hard
even for classes where candidness cannot be guaranteed for all examples.

2.6. Canonical forms are necessary options but insufficient defaults

Definition 5. A canonical form is one for which all equivalent expressions are represented uniquely.

With bottom-up simplification of an expression from its simplest parts, merely forcing a canonical
form for every intermediate result guarantees that every operand is canonical. This makes the
simplifier particularly compact, because there are very few cases to consider when combining sub-
expressions.

Table 2
Three canonical forms on the main spectrum for rational expressions

Form Univariate example Manifests

Factored on a common denominator x3(2x+
√
5−1)(2x−

√
5−1)

4(x−1)2(x+1)
Zeros, poles, their multiplicities,
often less rounding error

Expanded on a common denominator x5−x4−x3

x3−x2−x+1
Degrees of numerator and de-
nominator

Partial fractions x2 −
1

2(x−1)2
−

3
4(x−1) −

1
x+1 Poles, their multiplicities, their

residues, asymptotic polynomial

9 Top-down simplification can be more efficient in some instances, such as

21000

1/1000 .
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Table 2 lists examples and informational advantages of three canonical forms for rational
expressions. Factored form depends on the amount of factoring, such as square-free, over Z, over Z[i],
with user-specified algebraic extensions, with whatever radicals are necessary and applicable, with a
rootOf(. . .) functional form, or with approximate coefficients. Partial-fraction form similarly depends
on the amount of factoring of denominators. Moreover, for multivariate examples there are choices
for the ordering of the variables and for which subsets of the variables are factored versus expanded.
Also, Stoutemyer (2008) discusses alternative forms ofmultivariate partial fractions.

There are also canonical forms for some classes of irrational expressions, such as some kinds of
trigonometric, exponential, logarithmic, and fractional-power expressions. However:

• no one canonical form can be good for all purposes.
• any one canonical form can exhaust memory or patience to compute,
• any and all classic canonical forms can be unnecessarily bulky. For example, both the factored and

expanded forms of candid (x99 − y99)(9x + 8y + 9)99 are much bulkier. As another example, both
the common denominator and complete partial-fraction forms of the following candid form are
much bulkier:

a8

a9 − 1
+

b8

b9 − 1
+

c8

c9 − 1
+

d8

d9 − 1
,

• users prefer that default results preserve input structure that is meaningful or traditional to the
application, as much as possible consistent with candidness.

Thus canonical forms are too costly and extreme for good default simplification. Given optional
transformation functions that return desired canonical forms, there is no need for default simplifica-
tion to rudely force one of them or even the most concise of them.

Definition 6. A functional form is an expression that is not a number, variable, sum, product or
rational power.

For example, ln(. . . ) is a functional form.

Definition 7. A generalized variable is a variable or a functional form.

The reason for these definitions is that when adding, multiplying and exponentiating expressions
containing simplified functional forms, those forms can, for the most part, be treated the same as
variables.10

Goal 7 (Factored through partial fractions). For expressions that are rational combinations of
generalized variables, default simplification should be capable of returning anyof a dense subset
of all forms obtained by combining some or all factors of fully factored form or combining some
or all fractions of complete multivariate partial fractions.

Goal 8 (Nearby form). Default simplification should deliver a candid result that is not unneces-
sarily distant from the user’s input.

Good default simplification to a nearby candid form reduces the user’s need to try a sequence of
optional drastic transformation functions with the hope of thereby obtaining a candid result that is
probably much farther than need be from the input.

10 There can, however, be additional transformational opportunities such as sin (2x) / sin x → 2 cos x, as discussed in
Appendix D.
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2.7. Please do not try my patience!

If a lengthy computation is taking an unendurable amount of time, a user will terminate the
computation, obtaining no result despite the aggravating wasted time. Users have to accept that for
certain inputs, certain optional transformations sometimes exhaust memory or patience. However, if
default simplification also does this, then the system is worse than useless for those problems because
it wastes time for no result. Thuswith the availability of various optional transformations such as fully
factored over a common denominator through complete or total partial-fraction expansion, default
simplification should strive to return a candid form that can be computed quickly without exhausting
memory. As an associated benefit of thus avoiding costly transformations when we can candidly do
so, the result is likely to be closer than most other candid forms to the user’s input.

Definition 8. When more than one supported transformation leading to alternative candid forms is
applicable, a guessed least cost transformation is one that is guessed to be least costly.

It is important that the time spent guessing a least cost alternative is modest compared to actually
doing the transformations. Where practical it is better if the guesses take into account not only
the costs of the immediate alternative transformations, but also the guessed costs of consequent
subsequent operations. For example, with B and D being multinomials, for the transformation

A
B

+
C
D

→
AD + BC

BD
,

avoiding the cost of gratuitously expanding BD is also likely to reduce the cost of subsequently
combining this result with other expressions.

Goal 9 (Frugal). Default simplification should be as economical of time and space as is practical.

2.8. Idempotent simplification is highly desirable

Definition 9. An ephemeral form is one that default simplification alters.

Most computer algebra systems have one or more functions or operators that can produce ephemeral
forms. For example, most computer algebra systems have a function that does a transformation such
as

integerFactor(20) → 22
·5;

but if you enter 22
·5, it transforms to 20.

Results that would otherwise be ephemeral can be protected by returning a different type of
expression such as a list of factors. Another alternative is to passively encapsulate 22

·5 in a special
functional form whose name is the null string. For example, many computer algebra systems use a
special form for truncated series results. However, both of these alternatives are a nuisance to undo if
you laterwant the result to combinewith ordinary algebraic expressions. For example, suchprotection
might prevent 2 · integerFactor(20) from automatically transforming to 23

·5 or to 40. More seriously,
such protection might prevent integerFactor (20) − 20 from automatically simplifying to 0. Also, the
invisible-function encapsulation alternative is so visually subtle that many users will not realize there
is anything to undo, and they will not notice a dangerously non-candid sub-expression in their result.

Another example is expansion in terms of orthogonal polynomials rather than a monomial basis.
Should the result be ephemeral or protected?

This is the ephemeral form dilemma: you are damned if you do protect results that would
otherwise be ephemeral, and you are damned if you do not.

There is less need for troublesome protection when functions that can return ephemeral forms
are used at the top level. Most computer algebra systems will resimplify the result whenever it is
subsequently combined with another expression. Restriction to top-level use can be guaranteed by
making the function instead be a command, such as

integerFactor 20.
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The standard named mathematical operators, elementary functions and higher transcendental
functions should not produce ephemeral forms. It would be nice if our default simplifier was
flexible enough to recognize and leave unchanged all candid expressions. Until then we must accept
ephemeral results from some functions that request optional transformations into forms that default
simplification does not recognize as candid.

Definition 10. Simplification is idempotent for a class of input expressions if simplification of the
result yields the same result.

Without this property, a cautious user has to re-enter such results as inputs until they cycle or stop
changing.

Failure of idempotency is usually a sign that a result sub-expression was passively constructed
where there should have been a recursive invocation of an internal simplification function. It can be
disastrous, because it can cause a non-candid result.

Goal 10 (Idempotency). Default simplification should be idempotent for all inputs composed of
standard named mathematical functions and operators.

3. Recursive partially factored form

Factors, factors everywhere, with opportunities to share.
—W.S. Brown

The previous section motivated and stated some highly desirable goals for default simplification.
This section and Section 4 describe a relatively simple way to accomplish many of these goals for
extended rational expressions of generalized variables.

A major issue for default simplification is the expansion dilemma: often polynomial and/or
partial-fraction expansion makes expressions bulkier and less comprehensible, but sometimes it is
necessary for candidness to enable key cancellations.

Another major issue for default simplification is the ratio-reduction dilemma: computing the
greatest common divisor of two multinomials to reduce a ratio is costly, the gcd often ends up being
1 anyway, and occasionally reduction increases rather than decreases the bulk. However not doing so
can lead to non-candid results that are often bulkier than necessary and more prone to catastrophic
cancellation near the removable singularities.

The Altran computer algebra system pioneered an excellent way to greatly ameliorate these two
dilemmas. By default, Altran represents rational expressions as a reduced ratio of two polynomials
that are individually allowed to range between fully factored and fully expanded. Distributed
representation is used for each multinomial factor. This form is candid and the set of result forms
that it can produce is a rather dense subset of the spectrum that it spans.

Brown (1974) eloquently explains whymany factors arise naturally with polynomials and rational
expressions during operations such as addition, multiplication, gcd computation, differentiation,
substitution, and determinants, then explains why it is important to preserve such factors and how to
do so. Hall (1974) gives additional implementation details and compelling test results. Those articles
are highly recommended supplements to this one.

By default, Altran polynomials are expanded only when necessary to satisfy the constraints of the
form. The resulting expressions are usually at least partially factored, greatly reducing the total time
spent on expanding polynomials and computing their gcds. The results are also usually more compact
than a ratio of two expanded polynomials.

Derive and TI-CAS also use partially factored representation, but with recursive rather than
distributed representation for multivariate sums. The opportunities for partial factoring are thereby
not confined to the top level. This can dramatically further reduce the result size, its distance from a
user’s input, the need for polynomial expansion, and the total cost of polynomial gcds.
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3.1. Recursive representation of extended polynomials

The representational statements in the remaining sections are abstract enough so that they apply
to both Derive and TI-CAS. Stoutemyer (submitted for publication) describes the extremely different
concrete data structures used by both systems, and TI (2001) presents more details for the TI-CAS
implementation.

In the internal representations, negations and subtractions are represented using negative coeffi-
cients, and non-numeric ratios are represented using multiplication together with negative powers.
Also, expressions are simplified from the bottom up. Therefore algorithms can rely on operands of
functions and operators already being as candid as they can be using default simplification.

The arguments of functional forms recursively use the samegeneral representationbeingdescribed
here.

Definition 11. A unomial is a generalized variable or a rational power thereof.

The exponent can be negative and/or fractional. Exponents that are not rational numbers are
represented internally using exp(. . . ) and ln(. . . ). For example, xy is represented as exp (y ln (x)).
A post-simplification pass converts this back to xy for display. This representation automatically
achieves certain simplifications such as 4z

−22z
→ 0 because of automatic simplifications for ln (. . .)

and exp (. . .). However, if I could do it over again Iwould insteaduse general expressions as exponents.
A unomial is automatically candid if it is a variable, a power of a variable, or a functional form

that has candid arguments and does not simplify to a simpler class. Otherwise we should check for
transformations that make the unomial more candid, such as |x|2 | x ∈ R → x2.

Generalized variables are ordered lexically.

Definition 12. A unomial-headed term is a unomial or a unomial times a coefficient that is either a
number or any candid expression having only lesser generalized variables.

A unomial-headed term is automatically candid if the unomial is a variable or a power thereof. For
example, distributing such a unomial over the terms of its candid coefficient that is a sum could not
enable any cancellations, because all of the terms in the coefficient are dissimilar to each other and
have only lesser variables than the distributed unomial. However, if the unomial is a functional form
or a power thereof, then we should check for possible cancellation or combination with functional
forms in the coefficient. For example with ordering |x| ≻ sign(x) ≻ y,

(sign(x) + y)·|x| → y·|x| + x,

which is more candid because the superfluous sign(x) has been eliminated.

Definition 13. An extended polynomial (in its main generalized variable) is one of:

• a candid constant,
• a unomial-headed term,
• a unomial-headed term plus a candid expression that is a constant or contains only less main

generalized variables,
• a higher-powered unomial-headed term plus an extended polynomial having the same main

generalized variable.

Recursively represented extended multinomials are automatically candid if the unomial for each
unomial-headed term is a variable or a power thereof. For example, distributing these distinct
unomials over their associated coefficients that are sums cannot enable cancellations: distributed
terms arising from different recursive terms will have distinct leading unomials. However, extended
polynomials containing fractional powers or functional forms might require additional checks and
transformations to achieve or strive for candidness, as explained in Appendices C and D. Here is an
example of a recursive extended polynomial in ln(x), and y, with ordering ln(x) ≻ y ≻ z:

(2y5/2 + 3.27i) ln(x)2 + (5z − 1)−7/3 ln(x) + (z + 1)1/2, (1)
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which displays as
2y5/2 + 3.27i


ln(x)2 +

ln(x)
(5z − 1)7/3

+
√
z + 1 .

Notice that this is not an extended polynomial in z, because of the fractional powers of the sums
5z − 1 and z + 1. However, the two sub-expressions involving z are candid, as required for the entire
expression to be candid.

Notice also that in expression (1) Derive, TI-CAS and this article display the unomial cofactors
right of their companion coefficients even though the cofactors are internally stored before the
coefficients. This internal ordering provides faster access to the cofactors, because they are accessed
more frequently than the coefficients.

The general-purposeDerive and TI-CAS data structures are flexible enough to represent distributed
form and mixtures, which are used when needed for algorithmic purposes and for displaying the
result of the expand(. . .) function when expanding with respect to more than one variable. However,
expression (1) is as expanded as it can be for recursive representation.

Another example, with x ≻ y is

x2

y
+


y2 + y + 5


+

8y
x

, (2)

which is represented internally as

y−1x2 + 8yx−1
+ y2 + y + 5. (3)

In this article the terms that are 0-degree in themain variable x are artificially grouped as (y2+y+5)
in expression (2) only for emphasis. They are not displayed that way in results, and they are not
collected under a single pointer internally.

Notice how internally the term with lead unomial x−1 term occurs between the term with lead
unomial x2 and the (implicitly) x0 terms in expression (3). This makes it faster to determine when the
reductum of a sum is free of the previously main variable. A minor disadvantage of this concession to
efficiency is that distributing or factoring out negative-degree unomials can change the relative order
of terms. For example,

x−1 
x2 + 5x − 7


↔ x − 7x−1

+ 5.

The more traditional ordering could be restored for display during a post-simplification pass.

3.2. Recursively partially factored representation

What is good for the goose is good for the goslings.

Distribution and co-distribution over sums is often less costly with recursive form than with
distributed form because:

• unomials are shared by terms that differ only in lesser variables,
• at any one level the term count for multivariate sums tends to be much less, reducing the sorting

costs,
• for many purposes distribution is often necessary only with respect to the top-level variable. Such

partial distribution is possible for recursive representation, but not for distributed representation.

Nonetheless, co-distribution of two sums having the same main variable can be costly in time
and usually also in the resulting expression size. Moreover, it is even more costly to recover the
factorization. Therefore, effort is made to avoid such co-distributionwherever candidly possible. One-
way distribution of an expression over a sum is less costly and less costly to reverse.
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With recursive representationwe can employ partial factoring at all levels, with dramatic benefits.
Evenwhen some expansion is necessary to enable possible cancellations, the recursive representation
might enable us to limit the amount of expansion. For example with recursive form and x ≻ a ≻ b,

((a2 − 1)1000x + b)x − bx → (a2 − 1)1000x2 + bx − bx
→ (a2 − 1)1000x2,

eliminating the superfluous variable bwithout expanding the coefficient

a2 − 1

1000.
In contrast with distributed representation we would have

((a2 − 1)1000x + b)x − bx → (a2000x − 1000a1998x + · · · + x + b)x − bx
→ (a2000x2 − 1000a1998x2 + · · · + x2 + bx) − bx
→ a2000x2 − 1000a1998x2 + · · · + x2 + bx − bx
→ a2000x2 − 1000a1998x2 + · · · + x2,

with 1001 terms, from which only the factor x2 is easily recoverable.
At each recursive level it is helpful to order factors internally by decreasing mainness of their

most main generalized variable, with any signed numeric factor last. This makes themain generalized
variable most accessible. Also, when the main generalized variable of a factor is less than for the
previous factor, then we know that the previous main generalized variable will not occur from there
on.

Ordering functional forms first according to the function or operator is advantageous for a few
purposes such as recognizing opportunities for transformations such as, with x ≻ y ≻ z:

|z|·y·|x| → y·|z|·|x|
→ y·|zx|,

ln(x) + y + ln(z) | x > 0 → ln(x) + ln(z) + y | x > 0
→ ln(xz) + y | x > 0.

Such transformations can be helpful for limits, equation solving, and to reduce the number of
functional forms for display during a post-simplification pass. However, for most default internal
simplification it is more helpful to order functional forms according to lexical comparison of their
successive arguments, using the function or operator name only as a final tie breaker. This helps group
together factors depending on themain variable. Therefore this is the order used byDerive and TI-CAS.

It is also helpful to have any unomial factor immediately after all non-unomial factors having the
same main generalized variable. That way we can be sure that when the first factor of a product is
a unomial, then the rest of the product is free of the unomial’s generalized variable. This is a very
common case because for fully expanded recursive extended polynomials, non-unomial factors can
only occur as the last factor in products.

A post-simplification pass can rearrange the factors to themore traditional display order described
by Moses (1971).

3.3. Units and unit normal expressions

Polynomials over Z, Z[i], Q and Q[i] are unique factorization domains. However, to exploit that
uniqueness efficiently, in factored expressionswe should uniquely representmultinomial factors that
differ only by a unit multiple such as −1 or i. This has the additional benefit of making syntactic
common factors more frequent, reducing the need for polynomial expansion.

More seriously, not making the numerator and denominator multinomials unit normal in the
following example can prevent improving it to 1:

((3 − 5i) z + 1) ((7 + i) z + i)
((5 + 3i) z + i) ((1 − 7i) z + 1)

.
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Definition 14. The leading numeric coefficient of an extended polynomial is recursively:

• the extended polynomial if it is a number,
• 1 if the extended polynomial is a unomial,
• the leading numeric coefficient of the coefficient if the extended polynomial is a unomial-headed

term that is not a unomial,
• otherwise the leading numeric coefficient of the leading term.

Definition 15. An expression is unit normal over Z if its leading numeric coefficient is positive.

If not, it can be made so by factoring out the unit −1.

Definition 16. An expression is unit normal over Q or Q[i] if its leading numeric coefficient is 1.

If not, it can be made so by factoring out the leading numeric coefficient, which is a unit in these
domains.

Definition 17. An expression isunit normal overZ[i] if for its leading numeric coefficient c ,−π/4 <
arg(c) ≤ π/4.

If not, it can be made so by factoring out the unit −1 and/or the unit i. This is one of two alternative
definitions motivated and described in more detail in Stoutemyer (2009).

3.4. Recursive factorization of unit quasi-content

We can further increase the likelihood of syntactic common factors by factoring out their quasi-
content:

Definition 18. The quasi-content of a recursive partially factored sum is the product of the least
powers of all syntactic factors among its terms, multiplied by the gcd of the numeric factors of those
terms. The quasi-content is computed and factored out level by level, starting with the least main
generalized variables.

Definition 19. The unit quasi-content of a partially factored sum is the product of its quasi-content
and the unit that is factored out to make the sum unit normal.

Definition 20. A recursive partially factored sum that has its quasi-content factored out at all levels
is quasi-primitive.

Definition 21. A recursive sum isunit quasi-primitive if it is unit normal andquasi-primitive at every
level.

For example with x ≻ a ≻ b,

−6a2bx + 6a2x + 6b2x − 6x + 8a2(a + b + 9)9 − 8(a + b + 9)9

recursive
−→


−6b2 + 6


a2 +


6b2 − 6


x + 8


a2 − 1


(a + b + 9)9

innermost
−→


−6


b2

− 1

a2 + 6


b2

− 1


x + 8

a2 − 1


(a + b + 9)9

mid-level
−→ −6


b2 − 1

 
a2

− 1

x + 8


a2

− 1

(a + b + 9)9

outermost
−→ −2


a2

− 1
 

3

b2 − 1


x − 4 (a + b + 9)9


.

Not only does this preserve the entered internal factor (a + b + 9)9 — it also discovers another
internal factor b2 − 1 and a top-level factor a2 − 1. In contrast, distributed partially factored form
cannot represent the internal factors, and it could discover only the unit−1 and the top-level numeric
content of 2.Worse yet, the unavoidable forced expansion of (a+b+9)9 would addmanymore terms,
with many nontrivial coefficients.

Determining minimum degrees of syntactic factors requires a number of base and exponent
comparisons that are each bounded by the number of non-numeric syntactic factors in the recursive
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form. Determining the units to factor out at each level requires less work because only the leading
terms at each level must be inspected. Determining the mutual gcd of n numeric coefficients is n − 1
sequential gcds that start with the gcd of the first two coefficientmagnitudes and decrease from there.
This is significantly faster than n−1 independent gcds between those coefficients, because whenever
the net gcd does not decrease much, few remainders were required, whereas whenever the net gcd
decreases substantially, fewer remainders are required for subsequent gcds.

At each level, if a unit quasi-content is not 1, factoring it out requires effort proportional to the
number of top-level terms at that level, plus some possible effort for numeric divisions. Thus the
overall cost of making a polynomial unit quasi-primitive is at most a few times the cost of thoroughly
distributing the units and quasi-contents back over the terms as much as is allowed with recursive
representation.

3.5. Demand-driven extraction of signed quasi-content

We want to represent and operate directly on both expanded and partially factored recursive
expressions. A sum having partially factored terms is candid regardless of whether the terms are unit
quasi-primitive or not. A sum might candidly have unit quasi-contents fortuitously factored out at
some of the deepest levels but not at shallower levels, with different boundaries for different terms.

The default policy of least guessed cost together with the desire to represent and operate on
recursively expanded extended polynomials as well as on partially factored ones indicates that we
should not automatically unit quasi-primitize a sum result. The next operation, if any, might force
partial or total redistribution. Insteadwe should postpone unit quasi-primitization until we guess that
it is the least costly alternative, such as when the alternative is top-level co-distribution or top-level
expanding a positive integer power of a sum.

For a fully expanded recursive extended polynomial, sums can occur only at the top level and/or
as the last factor in products. Therefore it is helpful to require that all powers of sums and all
products containing top-level sums that are not the last factor are unit quasi-primitive. This makes
similar factors more likely and makes it easy to infer that such sums are already unit quasi-primitive.
Powers and/or products containing unit quasi-primitive sums are efficiently and candidly multiplied
by merging and combining similar factors. Polynomial gcds are required only between factors whose
bases are sums raised to oppositely signed multiplicities. Also, similar factors having such sums as
bases can be extracted to reduce the amount of expansion when adding two powers or unit quasi-
primitive products.

When a factor that is a power of a sum or is a sum that is not the last top-level factor in a product
thus implies that all sums in the product are unit quasi-primitive, thenwe can call a different auxiliary
function than otherwise so that this property is recursively knownwhen it is no longer easily deduced
for the remaining factors.

It is also possible to store information about known unit quasi-primitiveness or other factorization
levels with each sum. One way is to have a separately tagged data structure for each different
factorization level of interest. However, consistently managing such information complicates the
implementation. ThereforeDerive and TI-CAS instead re-determine such properties when they cannot
easily be inferred or exploited via different auxiliary functions. Even without such information, the
time it requires to determine that a sum is already unit quasi-primitive is less than the time that it
requires to unit quasi-primitize it if it is not. Moreover, the mean time it requires to determine that a
sum is not unit quasi-primitive is even less because that fact might be revealed after inspecting only
a small portion of the terms — often only one term.

Heuristics can help guide the choice when there is a choice between co-distribution of two sums
or making them both unit quasi-primitive then simply merging the resulting factors. For example, If
one of the sums is the same as the other but with conjugates or opposite signs for a proper subset of
the coefficients but not all of them, then there is likely to be some beneficial cancellation when these
two conjugate sums are co-distributed.
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4. Recursively partially factored semi-fractions

Fractions, fractions everywhere, with opportunities to share.

Common denominators can enable cancellations that reduce degrees, eliminate denominators, or
eliminate variables. For example,

1
x − 1

−
1

x + 1
−

2
x2 − 1

:)
→ 0.

However, common denominators can be costly in computing time and in the size of the result. For
example,

a
a − 1

+
b

b − 1
+

c
c − 1

+
d

d − 1
→

(((4d − 3) c − 3d + 2) b − (3d − 2) c + 2d − 1) a − ((3d − 2) c − 2d + 1) b + (2d − 1) c − d
(a − 1)(b − 1)(c − 1)(d − 1)

.

This is the common denominator dilemma: you might be damned if you do force common
denominators, but you might be damned if you do not force common denominators.

Also, users feel too constrained if all of their default results are forced to have a common
denominator. For example, when integration entails distribution of integration over sums, most users
prefer to see the result as a corresponding sum — particular in education.

In contrast to Altran, Derive and TI-CAS use a candid form for extended rational expressions that
also accommodates a sum of an extended polynomial and any number of proper ratios of extended
polynomials having denominatorswhose pairwise gcds are numeric. The denominators do not need to
be square-free or irreducible. Moreover, these denominators together with the extended polynomial
part and the numerators of the fractions can be partially factored. This partially factored semi-fraction
form thus flexibly extends the Altran spectrum through partial fractions. For rational expressions
of generalized variables, the broad spectrum from factored over a common denominator through
partial fractions accommodates most of the result forms often wanted by most users for default
simplification.

4.1. Quasi-primitization implies common denominators

Usingmultiplication and negative exponents to represent ratios leads to the insight that combining
expressions over a common denominator is simply quasi-primitization, which is a partial factoriza-
tion. For example with multinomials B and D, the internal representation of

A
B

+
C
D

is AB−1
+ CD−1, for which factoring out the lowest degree of each syntactic factor gives (AD +

BC)B−1D−1, which is displayed as

AD + BC
BD

.

The only additional responsibility for negative exponents of sums is to check for possible gcd
cancellations between dissimilar sum factors raised to positive and negative multiplicities.

Definition 22. Extended rational expressions are composed of extended polynomials and ratios of
integer powers of extended rational expressions.

Making an extended rational expressionunit quasi-primitive and cancelingmultinomial gcds between
numerators and denominators make it candid: quasi-primitization recursively factors out the lowest
occurring degree of syntactically similar factors, forcing a single commondenominator andmaking the
exponents all positivewithinmultinomial factors. This togetherwith themultinomial gcd cancellation
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guarantees that the total apparent degree for each variable is the actual degree. That in turn guarantees
that there are no superfluous variables and that extended polynomials do not appear to be more
general extended rational expressions.

4.2. Extended polynomials with rational expressions as coefficients

As discussed in Section 3.1, the coefficients in a candid extended polynomial can be any
candid expressions having only lesser generalized variables. This includes candid extended rational
expressions. Thus recursive form easily accommodates expressions that are extended polynomials
having coefficients that are candid extended rational expressions in lesser variables, such as for
x ≻ y ≻ z:

y5/2 +
z2

2z + 1
y +

7
z + 4


x2 +


1
y


x +


3y3

y + 5


.

This form is candid despite the lack of a common denominator, because the coefficients (including
those of implicit y0 within the coefficient of x2 and of x0 for the last term) are all candid expressions
in lesser variables.

4.3. Adding improper ratios to extended polynomials

Definition 23. A term is any expression or sub-expression that is not a sum at its top level.

Definition 24. A sum-headed term is a term whose leading factor is a sum or a power thereof.

It is helpful to order terms in a sum into descending order of their main variables. Among terms
having the same main generalized variable it is helpful to order the sum-headed terms first so
that the significant presence of sum-headed terms in the main generalized variable is more quickly
determined.11 Among sum-headed terms having the same main generalized variable, it is important
to order the terms in some well-defined and easily computed order.

Definition 25. A proper term is one that is not sum headed or for its main variable the degree of its
numerator is less than the degree of its denominator.

An improper sum-headed term can be made proper by using division with remainder with respect
to its main generalized variable. This transforms the term into an extended polynomial in that
generalized variable plus a proper sum-headed term in that generalized variable.

Regardless of the variables therein, a proper termcan always candidly coexistwith unomial-headed
terms and/or a numeric term.

We have already seen that an improper term can candidly coexist with unomial-headed terms
having greater main generalized variables. However, if an improper term would order before another
term, then we should either force a common denominator for those two terms or make the ratio
proper to allow possible important cancellations. For example, using the internal ordering of terms
with x ≻ y ≻ b,

x +
by + b + 1

y + 1
+ y − b → x +

y2 + y + 1
y + 1

or → x +


b +

1
y + 1


+ y − b

→ x +
1

y + 1
+ y,

11 In contrast, rational expressions consisting of a polynomial plus proper-ratio terms are traditionally displayed with all the
polynomial terms left of any proper-ratio terms. A post-simplification pass can be used to display such terms in this more
traditional order.
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either of which eliminates the superfluous variable b.

4.4. Making a ratio proper can introduce removable singularities

Unfortunately, it is a little known fact that making a ratio proper can contract the domain of
equivalence by introducing removable singularities if the leading coefficient of the denominator is
not constant. For example, using the internal ordering of terms with x ≻ c,

x
cx − 1

:(
→

1
c (cx − 1)

+
1
c
.

At c = 0 the left side simplifies to −x, whereas the right side is ±∞ − ±∞. Also, for approximate
arithmetic the right side is more prone to underflow, overflow and catastrophic cancellation near
c = 0. Moreover, the right side is less candid because it suggests that c would be a factor in a reduced
common denominator.

In contexts such as where integration requires a proper fraction, we can either ask the user if c = 0
or use a piecewise result such as∫

x
cx − 1

dx →

∫ 
−x if c = 0

1
c(cx−1) +

1
c otherwise

dx

→


−x2/2 if c = 0,
ln(cx−1)

c2
+

x
c otherwise.

Whenproper fractions are notmandatory, default simplification should use the commondenominator
choice if the leading coefficient of the denominator could be 0 for some values of the variables therein
within the problem domain.

If the denominator of a proper sum-headed term has a non-numeric gcdwith the denominator of a
lesser term, then combining those two terms over a commondenominatormight improve candidness.
For example with x ≻ c ,

1
c (cx − 1)

+
1
c

:)
→

x
(cx − 1)

.

The left side falsely suggests that c would be a common factor in the reduced common denominator.
Also, only the left side is undefined at c = 0. However, forcing a common denominator in such
situations could make some results of a properFraction (. . .) function be ephemeral. Also, it is not
as heinous for default simplification to decline an opportunity to remove a removable singularity as
it is to introduce one.

4.5. Sums of ratios having the same main variable

Even if their main generalized variables are the same, proper ratios can candidly be merged
together as a sum if the gcd of their denominators is numeric. In contrast, there might be important
cancellations between sums of improper ratios even if the gcd of their denominators is numeric. For
example with x ≻ c:

cx + c + 1
x + 1

−
cx − c − 1

x − 1
→


1

x + 1
+ c


−


−

1
x − 1

+ c


→
1

x + 1
+

1
x − 1

,

which eliminates the superfluous variable c. Therefore a good default is to combine such ratios over
a common denominator if it removes a singularity or if making the ratios proper requires a piecewise
result. Otherwise make the ratios proper because it is closer to the input and likely to cost less.
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There can also be important cancellations between the sum of two ratios A/B and C/D if the gcd
G of their denominators is non-numeric. One alternative is to combine such ratios, and that is what
Derive and TI-CAS do. However, if the main variable of G is the same as that of B and D, then we can
instead:

• split A/B into an extended polynomial part and two proper semi-fractions having denominators G
and B/G,

• split C/D into an extended polynomial part and two proper semi-fractions having denominators G
and D/G,

• combine the extended polynomial parts and combine the numerators of the fractions having
denominator G, then passively merge that result with the passive sum of the proper ratios having
denominators B/G and D/G.

If G is small compared to both B and D, then splitting is more likely to give a less bulky result than
combining. Here is a borderline example:

x2 + x − 3
(x2 − 1)(x − 2)

−
2x

(x − 2)(x + 2)
→ −

x2 − x − 3
(x2 − 1)(x + 2)

or →


1

x2 − 1
+

1
x − 2


−


1

x − 2
+

1
x + 2


→

1
x2 − 1

−
1

x + 2
.

Notice that 1/(x2 − 1) was not split. There was no need to split it.
Splitting a proper fraction into semi-fractions can introduce singularities if the leading coefficient

of the given denominator can be 0 in the problem domain. For example,

2x
c2x2 − 1

→


−2x if c = 0,

1
c (cx−1) +

1
c (cx+1) otherwise.

Combining fractions is a better default in such cases or when combining fractions removes a
singularity.

5. Summary

Good default simplification should produce an equivalent result wherever the input is defined
in the problem domain. This might require a piecewise result or querying the user and attaching
a constraint to their input. Also, users should optionally be able to prevent domain enlargement
by having constraints automatically attached to the output. Constraints provided by the user and
systemshould bepropagated to the output to prevent substitution of inappropriate values. These goals
require implementation of an isDefined (. . .) function that is easily customized by users to consider
any subset of uniqueness, finiteness and realness.

Also, users should be able to optionally disable default transformations.
Most important, default simplification should try hard quickly to produce a nearby idempotent

candid result in the spectrum from fully factored over a common denominator through complete
multivariate partial fractions.

Derive and TI-CAS implement a partially factored semi-fraction form and associated default
simplification algorithms that go a long way toward fulfilling these goals.
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Appendix A. Very-proper terms

Definition 26. A sum-headed term of the form N
Dα with D square-free, main variable x, and α ≥ 1 is

a very-proper term if the degree of x in N is less than the degree of x in D.

For sums of reduced ratios having denominators that are numeric or lesser-variable multiples of the
same square-free polynomial raised to different powers:

• they can candidly coexist if they are all very proper,
• otherwise we should either combine the terms or further split them so that all of them are very

proper. For example,

x + 2

(x + 1)2
−

1
x + 1

→
(x + 2) − (x + 1)

(x + 1)2
→

1

(x + 1)2

or →


1

(x + 1)2
+

1
x + 1


−

1
(x + 1)

→
1

(x + 1)2
.

Further expansion of proper ratios into very-proper ratios often increases total bulk. However,
some algorithms such as integration sometimes require very-proper ratios. Default Derive and TI-
CAS simplification combine ratios for which the gcd of the denominators is non-numeric. Therefore
although very-proper fractions are produced by the optional expand(. . .) function and when needed
for purposes such as integration, they can be ephemeral.

Appendix B. Preserving primitive factors in reduced ratios

Definition 27. The term content of a recursively represented multinomial is the gcd of its top-level
terms, regarded as an extended polynomial in its main generalized variable.

Definition 28. A recursively represented multinomial is recursively term primitive if its term
content is 1 at every recursive level.

To recursively primitize a quasi-primitive polynomial: at each recursive level of each quasi-primitive
multinomial factor, starting with the deepest levels, factor out the gcd of the terms. This might entail
nontrivial polynomial gcds if more than one coefficient hasmultinomial factors. This might also result
in a multinomial having partially factored coefficients.

Most polynomial gcd algorithms and many factoring algorithms either require or benefit from
further factoring a quasi-primitive multinomial into a term-primitive polynomial times a term
content, and from recursivelymaking that content be term primitive with respect to its main variable,
etc. Therefore as a side effect of primitizing a numerator and denominator to assist computing their
gcd, the immediate result of the reduction is that every multinomial factor in the reduced result is
recursively term primitive with respect to its main variable. This knowledge can save significant time
when the ratio is combined with another expression or when further factorization is desired. For
example:

• we can skip the primitization step on the numerator or denominator when computing its gcd with
another multinomial,

• if two term-primitive multinomials have different main variables, then they are relatively prime,
allowing us to avoid computing their gcd,

• if a multinomial is term primitive in a variable and linear in that variable, then the multinomial is
irreducible, allowing us to avoid a futile attempt at gcds or further factorization.
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Also, primitization further increases the chances of syntactically similar factors that can be
combined and shared.

Primitization involves gcds of polynomials having fewer variables than the original quasi-primitive
multinomial, and the cost of multinomial gcds generally grows rapidly with the number of variables.
For this reason and reasons similar to computation of the numeric content, primitization is often
less costly than computing the gcds between the resulting primitive polynomials. For example, it is
worth considering the primitated coefficients in order of increasing complexity so that their iteratively
updated gcd is likely to approach 1 more quickly. For quasi-primitive multinomials, the term content
must bemultinomial if it is not 1, and any variable not present in all of the coefficients cannot occur in
the final content. Therefore the multinomial part of the content is 1 if the intersection of the variables
occurring in the multinomial factors of the coefficients, S, is the empty set. Also, we can substitute
judicious numeric values for variables not in S without having to lift to restore those variables. For
these reasons, recursive primitization can beworth the investment in some circumstances evenwhen
not needed for ratio reduction.

The fact that default simplification leaves the numerators and denominators of ratios recursively
primitive when they have sums in their denominators means that if the user requests an expanded
numerator and/or denominator, it might be ephemeral. However, this is alright, because:

• term-primitive factorization is preferable to an expanded numerator and denominator in most
respects,

• in the rare cases where a fully expanded numerator and/or denominator is helpful, such as
facilitating some default and optional transformations for fractional powers and functional forms
as described in Appendices C and D, these transformations can be facilitated by a provisional
expansion followed by re-primitization if any such transformation then occur.

Appendix C. Additional considerations for fractional exponents

Hearn and Loos (1973) remark that quotients, remainders, gcds and many other polynomial
operations can be well defined for fractional exponents of variables. For division and gcds we want
non-negative exponents, and quasi-primitization accomplishes that. As examples of division and gcds
for such extended multinomials,

z − 1
z1/2 − 1

:)
→ z1/2 + 1,

and

gcd (x − 1, x + 2x1/2 + 1) → x1/2 + 1.

Polynomial remainder sequence gcd algorithms require no change. However, any polynomial
division or gcd algorithm that relies on substituting numbers for variables should first temporarily
substitute for any variable x that has fractional exponents in either polynomial, a new variable t1/g ,
where g is the gcd of all the occurring exponents of that variable in both polynomials. (The gcd of
two reduced fractions is the gcd of their numerators divided by the least common multiple of their
denominators.) Even for all integer exponents this substitution can have the advantage of reducing
the degrees, which is important to algorithms that substitute numbers for variables.

Regarding factoring, allowing the introduction of fractional exponents of factorization variables
makes factoring non-unique and not very useful. For example, we could factor x − 1 into
(x1/2 − 1)(x1/2 + 1) or into (x1/3 − 1)(x2/3 + x1/3 + 1) or into an infinite number of different such
products. Instead, we should bias the partially factored form to expand by default when fractional
powers of a variable might thereby be eliminated or reduced in severity.

Common denominators can similarly help eliminate fractional powers. For example,

1
z1/2 − 1

−
1

z1/2 + 1
→

2
z − 1

.
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Thus it is also worth biasing toward common denominators when fractional powers might thereby
be eliminated or reduced in severity.

Collecting similar factors that are fractional powers can enlarge the domain of definition for
variables that are real by declaration or default. For example,

x1/2x1/2 | x ∈ R
:)
→ x | x ∈ R

enlarges the domain of definition from x ≥ 0 to all x. Thus with domain-enlargement prevention
enabled, the result would instead be x | x ≥ 0. If the user is also using the real branch of fractional
powers having odd denominators, such as (−1)1/3 → −1, then we should append the constraint
only if for some radicand, fractional powers of that radicand having an even denominator entirely
disappear in the result.

Fractional powers of numbers, powers, products and sums involve additional complications that
can be superimposed on the algorithms for extended rational expressions overZ[i]. For example, there
are additional considerations such as de-nesting and rationalization of denominators or numerators.
Also, for internal simplification it is helpful to distribute exponents over products and to multiply the
exponents of powers. However, it is not always correct to do so for fractional powerswithout including
a rotational correction factor. Two always-correct principal-branch rewrite rules for exponents are

(zw)β → (−1)(arg(zw)−arg(z)−arg(w))β/π zβwβ , (C.1)

(zα)
β

→ (−1)(arg(z
α)−α arg(z))β/π zαβ . (C.2)

Depending on any declared realness of z and w or on declared intervals for arg(z) and arg(w),
the exponent of −1 tends to be quite complicated unless we can simplify it to a constant. Therefore,
transformations based on these identities are usually unwise unless that happens, as it always does
for z ≥ 0 or for integer α. To maximize opportunities for exploiting these identities, it is generally
best to factor multinomial radicands over Z or Z[i]. Often, this is enough to extract at least a numeric
factor from a radicand.

Appendix D. Additional considerations for functional forms

It is helpful to force the arguments of a functional form to a particular canonical form that can
depend on the set of optional or default rewrite rules for the function or operator.

Fully expanded arguments are a good choice for functions or operators that have a desired rewrite
rule for arguments that are sums or numeric multiples. For example,

exp(u + v) → exp(u) exp(v), (D.1)
exp(nu) → (exp(u))n , (D.2)

sin(u + v) → sin(u) cos(u) + cos(u) sin(v), (D.3)
sin(2u) → 2 sin(u) cos(u). (D.4)

Even if the rewrite rule is optional rather than default, expanded arguments relieve users from
having to explicitly request the expansion before applying the rewrite rule. Moreover, expanded
arguments reveal and suggest the applicability of the optional rules.

For analogous reasons, a canonical factored form is a good choice if the function or operator has a
rewrite rule for products or powers in one of its arguments, such as

|uv| → |u|·|v|, (D.5)
|uk

| → |u|k. (D.6)
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Many functions have identities for factoring out the unit−1 and/or i. If so, this should be exploited
to make the argument of the function unit normal. For example, we have the identities

arcsinh(−u) ≡ −arcsinh(u),
arcsinh(iu) ≡ i arcsin(u),

ℑ(−u) ≡ −ℑ(u),
ℑ(iu) ≡ ℜ(u).

These can be exploited not only when the coefficient of the argument of arcsinh, arcsin, ℑ or ℜ is
negative or amultiple of i, but alsowhen it is any complex number that is not unit normal. For example,
does your computer algebra system correctly simplify the following expression to 0 by default?

arcsinh ((1 − 2i)z) + i arcsin ((i + 2)z) + ℑ ((1 − 2i)z) + ℜ ((i + 2)z) .

In the absence of rewrite rules that exploit expansion or factorization, it is nonetheless helpful
to force the arguments to a particular canonical form that can depend on the particular function.
Otherwise, opportunities for collecting and canceling similar factors or terms can be missed, leading
to a non-candid result. For example, we want

f

x2 − 1


− f ((x − 1)(x + 1))

:)
⇒ 0

for any f (. . .). For the arguments of such functional forms we could choose a canonical form that
tends to be compact and not too costly to compute, such as square-free factored form or square-
free multivariate partial fractions. However, sub-expressions outside functional forms rarely move
inside them. Consequently argument size tends to be small compared to top-level extended rational
expressions containing those functional forms. Therefore, a fully expanded or fully factored form
over Z is rarely costly for functional-form arguments. Moreover, for internal representation it is most
often helpful instead to move as much of the arguments as possible outside functional forms, which
increases the chance of similar factors or terms that can combine or cancel.

Rewrite rules for powers or products of functional forms must be superimposed on the algorithms
for the partially factored semi-fraction form. For example, consider the rules

cos(u)2 → 1 − sin(u)2,

sin(u) cos(v) →
sin(u − v) + sin(u + v)

2
.

Opportunities for using such rules are easier to recognize and exploit if the default is biased toward
common denominators and expanding products and powers of sums when they contain appropriate
sinusoids. For example,

sin(x)
cos(x) + 1

+
sin(x)

cos(x) − 1
→

2 sin(x) cos(x)
(cos(x) + 1)(cos(x) − 1)

→
2 sin(x) cos(x)
cos(x)2 − 1

→
2 sin(x) cos(x)

− sin(x)2

→
−2 cos(x)
sin(x)

,

which a post-simplification pass could display as−2 cot(x). Evenwhere such rules are optional rather
than default, expanding over a common denominator makes the opportunities more obvious to users.

Rewrite rules for sums of functional forms must also be superimposed on the algorithms for
the partially factored semi-fraction form. For example, consider the always-correct principal-value
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rewrite rule

ln(u) + ln(v) → ln(uv) + (arg(u) + arg(v) − arg(uv)) i
→ ln(uv) − 2π i κ(ln(u) + ln(v))

→


2π if arg u + arg v ≤ −π,

−2π if arg u + arg v > π,

0 otherwise

where κ is the unwinding number discussed by Corless and Jeffrey (1996). Opportunities for using
such rules are easier to recognize and exploit if the default is biased toward factoring sumswhen they
contain such functional forms. For example,

(ln x)2 + 2 ln 2 ln x + (ln 2)2 − 1 → (ln x + ln 2 + 1) (ln x + ln 2 − 1)
→ (ln (2x) + 1) (ln (2x) − 1) .

If unomials have functional forms as generalized variables, then rewrite rules between functional
forms might require additional checks to make sure that recursive form is candid. For example with
cos (x) ≻ sin (x) ≻ y,

(y + 1) cos2 (x) + y sin2(x)

complies with recursive representation. However, for candidness it should be transformed to
y cos2 (x) + 1.

One approach to simplifying expressions containing functional forms is to exploit dependency
theorems such as a Risch structure theorem (Risch, 1979). The idea is: each time you combine two
simplified expressions both containing functional forms, you set up then attempt to solve a system of
equations expressing conjectured dependency between the functional forms. If there is no solution,
then all of the functional forms are independent and can candidly coexist. Otherwise the solution
indicates how to represent a subset of the functional forms in terms of the other functional forms.

By itself, this method does not prescribe which subset to use as a basis, so it is not canonical.
Also, two sub-expressions containing functional forms can combine many times during the course
of simplifying an input. Consequently there can be many times requiring a complete scan of both
operands to set up then attempt to solve the equations — perhaps the same set that has already been
considered for a different sub-problem.

An approach that tends to avoid these difficulties is instead to use rewrite rules that move as
much of the arguments as possible outside the arguments of functional forms, driving them toward
canonicality. For example, all of the numbered rewrite rules in this appendix and Appendix C are of
that type.

However, displayed results are often more concise if the number of functional forms is reduced by
using such rewrite rules in the opposite direction during a post-simplification pass, such as |x||y| →

|xy|.
Special attention must also be given to infinities and multi-valued expressions. For example, we

do not want either ∞ − ∞ or ±1 − ±1 to simplify to 0.
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