# Difference between revisions of "Vertex equations of a quadratic function and it's inverse"

From JSXGraph Wiki

Jump to navigationJump to searchA WASSERMANN (talk | contribs) |
A WASSERMANN (talk | contribs) |
||

Line 2: | Line 2: | ||

The function term of the parabola then has the form | The function term of the parabola then has the form | ||

− | + | :<math>y = a (x-v_x)^2 + v_y.</math> | |

''a'' can be determined by solving | ''a'' can be determined by solving |

## Revision as of 15:13, 15 January 2021

A parabola can be uniquely defined by its vertex *V=(v_x, v_y)* and one more point *P=(p_x, p_y)*.
The function term of the parabola then has the form

- [math]y = a (x-v_x)^2 + v_y.[/math]

*a* can be determined by solving

*p_y = a (p_x-v_x)^2 + v_y* for *a* which gives

* a = (p_y - v_y) / (p_x - v_x)^2 *.

### JavaScript code

```
var b = JXG.JSXGraph.initBoard('box1', {boundingbox: [-5, 5, 5, -5], grid:true});
var v = b.create('point', [0,0], {name:'V'}),
p = b.create('point', [3,3], {name:'P'}),
f = b.create('functiongraph', [
function(x) {
var den = p.X()- v.X(),
a = (p.Y() - v.Y()) / (den * den);
return a * (x - v.X()) * (x - v.X()) + v.Y();
}]);
})();
```

### Inverse quadratic function

Conversely, also the inverse quadratic function can be uniquely defined by its vertex *V* and one more point *P*.
The function term of the inverse function has the form

*y = sqrt((x-v_x)/a) + v_y*.

*a* can be determined by solving

*p_y = sqrt((p_x-v_x)/a) + v_y* for *a* which gives

* a = (p_x - v_x) / (p_y - v_y)^2 *.

### JavaScript code

```
var b = JXG.JSXGraph.initBoard('box2', {boundingbox: [-5, 5, 5, -5], grid:true});
var v = b.create('point', [0,0], {name:'V'}),
p = b.create('point', [3,3], {name:'P'}),
f = b.create('functiongraph', [
function(x) {
var den = p.Y()- v.Y(),
a = (p.X() - v.X()) / (den * den),
sign = (p.Y() >= 0) ? 1 : -1;
return sign * Math.sqrt((x - v.X()) / a) + v.Y();
}]);
```