# Difference between revisions of "Vertex equations of a quadratic function and it's inverse"

From JSXGraph Wiki

Jump to navigationJump to searchA WASSERMANN (talk | contribs) |
A WASSERMANN (talk | contribs) |
||

(3 intermediate revisions by the same user not shown) | |||

Line 1: | Line 1: | ||

− | A parabola can be uniquely defined by its vertex | + | A parabola can be uniquely defined by its vertex <math>V=(v_x, v_y)</math> and one more point <math>P=(p_x, p_y)</math>. |

The function term of the parabola then has the form | The function term of the parabola then has the form | ||

:<math>y = a (x-v_x)^2 + v_y.</math> | :<math>y = a (x-v_x)^2 + v_y.</math> | ||

− | + | <math>a</math> can be determined by solving | |

− | + | :<math>p_y = a (p_x-v_x)^2 + v_y</math> for <math>a</math> which gives | |

− | |||

− | |||

+ | :<math> a = (p_y - v_y) / (p_x - v_x)^2 .</math> | ||

Line 42: | Line 41: | ||

===Inverse quadratic function=== | ===Inverse quadratic function=== | ||

− | Conversely, also the inverse quadratic function can be uniquely defined by its vertex | + | Conversely, also the inverse quadratic function can be uniquely defined by its vertex <math>V</math> and one more point <math>P</math>. |

The function term of the inverse function has the form | The function term of the inverse function has the form | ||

− | + | :<math>y = \sqrt{(x-v_x)/a} + v_y.</math> | |

− | + | <math>a</math> can be determined by solving | |

− | + | :<math>p_y = \sqrt{(p_x-v_x)/a} + v_y</math> for <math>a</math> which gives | |

− | + | :<math>a = (p_x - v_x) / (p_y - v_y)^2.</math> | |

## Latest revision as of 15:18, 15 January 2021

A parabola can be uniquely defined by its vertex [math]V=(v_x, v_y)[/math] and one more point [math]P=(p_x, p_y)[/math]. The function term of the parabola then has the form

- [math]y = a (x-v_x)^2 + v_y.[/math]

[math]a[/math] can be determined by solving

- [math]p_y = a (p_x-v_x)^2 + v_y[/math] for [math]a[/math] which gives

- [math] a = (p_y - v_y) / (p_x - v_x)^2 .[/math]

### JavaScript code

```
var b = JXG.JSXGraph.initBoard('box1', {boundingbox: [-5, 5, 5, -5], grid:true});
var v = b.create('point', [0,0], {name:'V'}),
p = b.create('point', [3,3], {name:'P'}),
f = b.create('functiongraph', [
function(x) {
var den = p.X()- v.X(),
a = (p.Y() - v.Y()) / (den * den);
return a * (x - v.X()) * (x - v.X()) + v.Y();
}]);
})();
```

### Inverse quadratic function

Conversely, also the inverse quadratic function can be uniquely defined by its vertex [math]V[/math] and one more point [math]P[/math]. The function term of the inverse function has the form

- [math]y = \sqrt{(x-v_x)/a} + v_y.[/math]

[math]a[/math] can be determined by solving

- [math]p_y = \sqrt{(p_x-v_x)/a} + v_y[/math] for [math]a[/math] which gives

- [math]a = (p_x - v_x) / (p_y - v_y)^2.[/math]

### JavaScript code

```
var b = JXG.JSXGraph.initBoard('box2', {boundingbox: [-5, 5, 5, -5], grid:true});
var v = b.create('point', [0,0], {name:'V'}),
p = b.create('point', [3,3], {name:'P'}),
f = b.create('functiongraph', [
function(x) {
var den = p.Y()- v.Y(),
a = (p.X() - v.X()) / (den * den),
sign = (p.Y() >= 0) ? 1 : -1;
return sign * Math.sqrt((x - v.X()) / a) + v.Y();
}]);
```