Difference between revisions of "Rose"
From JSXGraph Wiki
Jump to navigationJump to searchA WASSERMANN (talk | contribs) |
A WASSERMANN (talk | contribs) |
||
Line 19: | Line 19: | ||
var b2 = JXG.JSXGraph.initBoard('box2', {axis:true,originX: 250, originY: 250, unitX: 25, unitY: 25}); | var b2 = JXG.JSXGraph.initBoard('box2', {axis:true,originX: 250, originY: 250, unitX: 25, unitY: 25}); | ||
var f = b2.createElement('slider', [[1,8],[5,8],[0,4,8]]); | var f = b2.createElement('slider', [[1,8],[5,8],[0,4,8]]); | ||
− | var len = b2.createElement('slider', [[1,7],[5,7],[0,2,2]]); | + | var len = b2.createElement('slider', [[1,7],[5,7],[0,2,2]],{name:'len'}); |
− | var k = b2.createElement('slider', [[1,6],[5,6],[0,2,10]],{snapWidth: | + | var k = b2.createElement('slider', [[1,6],[5,6],[0,2,10]],{snapWidth:0.2,name:'k'}); |
var c = b2.createElement('curve', [function(phi){return f.Value()*Math.cos(k.Value()*phi); }, [0, 0],0, function(){return len.Value()*Math.PI;}], | var c = b2.createElement('curve', [function(phi){return f.Value()*Math.cos(k.Value()*phi); }, [0, 0],0, function(){return len.Value()*Math.PI;}], | ||
{curveType:'polar', strokewidth:2}); | {curveType:'polar', strokewidth:2}); | ||
Line 31: | Line 31: | ||
var b2 = JXG.JSXGraph.initBoard('box2', {axis:true,originX: 250, originY: 250, unitX: 25, unitY: 25}); | var b2 = JXG.JSXGraph.initBoard('box2', {axis:true,originX: 250, originY: 250, unitX: 25, unitY: 25}); | ||
var f = b2.createElement('slider', [[1,8],[5,8],[0,4,8]]); | var f = b2.createElement('slider', [[1,8],[5,8],[0,4,8]]); | ||
− | var len = b2.createElement('slider', [[1,7],[5,7],[0,2,2]]); | + | var len = b2.createElement('slider', [[1,7],[5,7],[0,2,2]],{name:'len'}); |
− | var k = b2.createElement('slider', [[1,6],[5,6],[0,2,10]],{snapWidth: | + | var k = b2.createElement('slider', [[1,6],[5,6],[0,2,10]],{snapWidth:0.2,name:'k'}); |
var c = b2.createElement('curve', [function(phi){return f.Value()*Math.cos(k.Value()*phi); }, [0, 0],0, function(){return len.Value()*Math.PI;}], | var c = b2.createElement('curve', [function(phi){return f.Value()*Math.cos(k.Value()*phi); }, [0, 0],0, function(){return len.Value()*Math.PI;}], | ||
{curveType:'polar', strokewidth:2}); | {curveType:'polar', strokewidth:2}); |
Revision as of 19:57, 27 June 2009
A rose or rhodonea curve is a sinusoid plotted in polar coordinates. Up to similarity, these curves can all be expressed by a polar equation of the form
- [math] \!\,r=\cos(k\theta).[/math]
If k is an integer, the curve will be rose shaped with
- 2k petals if k is even, and
- k petals if k is odd.
When k is even, the entire graph of the rose will be traced out exactly once when the value of θ changes from 0 to 2π. When k is odd, this will happen on the interval between 0 and π. (More generally, this will happen on any interval of length [math]2\pi[/math] for [math]k[/math] even, and [math]\pi[/math] for [math]k[/math] odd.)
The quadrifolium is a type of rose curve with n=2. It has polar equation:
- [math] r = \cos(2\theta), \,[/math]
with corresponding algebraic equation
- [math] (x^2+y^2)^3 = (x^2-y^2)^2. \, [/math]
The JavaScript code to produce this picture
<jsxgraph width="500" height="500" box="box2">
var b2 = JXG.JSXGraph.initBoard('box2', {axis:true,originX: 250, originY: 250, unitX: 25, unitY: 25});
var f = b2.createElement('slider', [[1,8],[5,8],[0,4,8]]);
var len = b2.createElement('slider', [[1,7],[5,7],[0,2,2]],{name:'len'});
var k = b2.createElement('slider', [[1,6],[5,6],[0,2,10]],{snapWidth:0.2,name:'k'});
var c = b2.createElement('curve', [function(phi){return f.Value()*Math.cos(k.Value()*phi); }, [0, 0],0, function(){return len.Value()*Math.PI;}],
{curveType:'polar', strokewidth:2});
</jsxgraph>