Difference between revisions of "Population growth models"
From JSXGraph Wiki
Jump to navigationJump to searchA WASSERMANN (talk | contribs) |
A WASSERMANN (talk | contribs) |
||
Line 42: | Line 42: | ||
function loop() { | function loop() { | ||
− | var y = alpha.X()*t.pos[1]; // Exponential growth | + | var y = alpha.X()*t.pos[1]*delta; // Exponential growth |
− | + | t.moveTo([delta+t.pos[0],y+t.pos[1]]); | |
− | |||
− | |||
− | |||
x += delta; | x += delta; | ||
− | if (x< | + | if (x<20.0) { |
setTimeout(loop,10); | setTimeout(loop,10); | ||
} | } | ||
Line 83: | Line 80: | ||
function loop() { | function loop() { | ||
− | var y = alpha.X()*t.pos[1]; // Exponential growth | + | var y = alpha.X()*t.pos[1]*delta; // Exponential growth |
− | t. | + | t.moveTo([delta+t.pos[0],y+t.pos[1]]); |
− | |||
x += delta; | x += delta; | ||
− | if (x< | + | if (x<20.0) { |
setTimeout(loop,10); | setTimeout(loop,10); | ||
} | } | ||
+ | |||
} | } | ||
</jsxgraph> | </jsxgraph> |
Revision as of 15:03, 23 April 2009
Exponential population growth model
In time [math] \Delta t[/math] the population grows by [math]\alpha\cdot y [/math] elements: [math] \Delta y = \alpha\cdot y\cdot \Delta t [/math], that is [math] \frac{\Delta y}{\Delta t} = \alpha\cdot y [/math].
With [math]\Delta \to 0[/math] we get [math] \frac{d y}{d t} = \alpha\cdot y [/math], i.e. [math] y' = \alpha\cdot y [/math].
The initial population is [math]y(0)= s[/math].
The red line shows the exact solution of the differential equation [math]y(t)=s\cdot e^{\alpha x}[/math]. The blue line is the simulation with [math]\Delta t = 0.1[/math].
The JavaScript code
<jsxgraph height="500" width="600" board="board" box="box1">
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true});
var t = brd.createElement('turtle',[4,3,70]);
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'});
t.hideTurtle();
function clearturtle() {
t.cs();
t.ht();
}
function run() {
t.setPos(0,s.X());
t.setPenSize(4);
delta = 0.1; // global
x = 0.0; // global
loop();
}
function loop() {
var y = alpha.X()*t.pos[1]*delta; // Exponential growth
t.moveTo([delta+t.pos[0],y+t.pos[1]]);
x += delta;
if (x<20.0) {
setTimeout(loop,10);
}
}
</jsxgraph>