Difference between revisions of "Discontinuous derivative"
From JSXGraph Wiki
Jump to navigationJump to searchA WASSERMANN (talk | contribs) |
A WASSERMANN (talk | contribs) |
||
Line 39: | Line 39: | ||
//var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'}); | //var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'}); | ||
− | var f = board.create('functiongraph', ["(0 < x | + | var f = board.create('functiongraph', ["(0 < x && x < 1) ? x^2*(1-x)^2*sin(1/(PI* x*(1-x))) : 0"], {strokeWidth:2}); |
</jsxgraph> | </jsxgraph> | ||
Revision as of 11:23, 13 February 2019
Consider the function (blue curve)
- [math] f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x^2\sin(1/x),& x\neq 0\\ 0,& x=0 \end{cases}\,. [/math]
[math]f[/math] is a continous and differentiable. The derivative of [math]f[/math] is the function (red curve)
- [math] f': \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 2\sin(1/x) - \cos(1/x), &x \neq 0\\ 0,& x=0 \end{cases}\,. [/math]
We observe that [math]f'(0) = 0[/math], but [math]\lim_{x\to0}f'(x)[/math] does not exist.
Therefore, [math]f'[/math] is an example of a derivative which is not continuous.
Here is another example:
- [math] g: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x^2(1-x)^2\sin(1/(\pi x(1-x)),& 0\ltx\lt 1\\ 0,& \mbox{otherwise} \end{cases}\,. [/math]
The underlying JavaScript code
First example:
var board = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-1/2,1/2,1/2,-1/2]});
var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'});
var f = board.create('functiongraph', ["x^2*sin(1/x)"], {strokeWidth:2});