Difference between revisions of "Circum circles of subtriangles"

From JSXGraph Wiki
Jump to navigationJump to search
Line 1: Line 1:
 +
Let ABC be a triangle and let the incircle intersect BC, CA, and AB at A', B', and C', respectively.
 +
 +
Let the circumcircles of AB'C', A'BC', and A'B'C intersect the circumcircle of ABC (apart from A, B, and C) at A'', B'', and C'', respectively.
 +
 +
Then A'A'', B'B'', and C'C'' meet in one point, P.
 +
 
<jsxgraph width="800" height="600">
 
<jsxgraph width="800" height="600">
 
brd = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-1,4,12,-4], keepaspectratio:true});
 
brd = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-1,4,12,-4], keepaspectratio:true});
Line 46: Line 52:
 
      
 
      
 
i5 = brd.createElement('intersection',[ll1,ll2,0],{name:"P",fillColor:'#9932CC',strokeColor:'#9932CC'});
 
i5 = brd.createElement('intersection',[ll1,ll2,0],{name:"P",fillColor:'#9932CC',strokeColor:'#9932CC'});
 +
</jsxgraph>
 +
 +
===The underlying JavaScript code===
 +
<source lang="javascript">
 +
brd = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-1,4,12,-4], keepaspectratio:true});
 +
p1 = brd.createElement('point', [0.5,-1.5] , {name:'A',fillColor:'red',strokeColor:'red'});
 +
p2 = brd.createElement('point', [7.5,0.5] , {name:'B',fillColor:'red',strokeColor:'red'});
 +
p3 = brd.createElement('point', [2,3] , {name:'C',fillColor:'red',strokeColor:'red'});
 +
   
 +
b1 = brd.createElement('line',['A','B'],{name:'',straightFirst:false,straightLast:false});
 +
b2 = brd.createElement('line',['A','C'],{name:'',straightFirst:false,straightLast:false});
 +
b3 = brd.createElement('line',['C','B'],{name:'',straightFirst:false,straightLast:false});
 +
   
 +
c1 = brd.createElement('circumcircle',['A','B','C'],{name:''});
 +
c1[1].setProperty('strokeColor:#AAAAAA');
 +
c1[0].hideElement(); // hide center of circle
 +
   
 +
l1 = brd.createElement('bisector',['B','A','C'],{name:'',visible:false}); // alpha
 +
l2 = brd.createElement('bisector',['C','B','A'],{name:'',visible:false}); // beta
 +
   
 +
i1 = brd.createElement('intersection',[l1,l2,0],{name:'',visible:false});
 +
pp1 = brd.createElement('perpendicularpoint',[i1,b1],{name:"C'",fillColor:'blue'});
 +
pp2 = brd.createElement('perpendicularpoint',[i1,b2],{name:"B'",fillColor:'blue'});
 +
pp3 = brd.createElement('perpendicularpoint',[i1,b3],{name:"A'",fillColor:'blue'});
 +
   
 +
c2 = brd.createElement('circumcircle',[pp1,pp2,pp3],{name:''});
 +
c2[1].setProperty('strokeColor:#3CB371');
 +
c2[0].hideElement();
 +
   
 +
c3 = brd.createElement('circumcircle',[p3,pp2,pp3],{name:''});
 +
c3[1].setProperty('strokeColor:#FF8C00');
 +
c3[0].hideElement();
  
 +
c4 = brd.createElement('circumcircle',[p2,pp1,pp3],{name:''});
 +
c4[1].setProperty('strokeColor:#FF8C00');
 +
c4[0].hideElement();
  
</jsxgraph>
+
c5 = brd.createElement('circumcircle',[p1,pp2,pp1],{name:''});
 +
c5[1].setProperty('strokeColor:#FF8C00');
 +
c5[0].hideElement();
 +
   
 +
i2 = brd.createElement('otherintersection',[c3[1],c1[1],p3],{name:"C''",fillColor:'blue'});
 +
i3 = brd.createElement('otherintersection',[c4[1],c1[1],p2],{name:"B''",fillColor:'blue'});
 +
i4 = brd.createElement('otherintersection',[c5[1],c1[1],p1],{name:"A''",fillColor:'blue'});
 +
 
 +
ll1 = brd.createElement('line',[i2,pp1],{name:'',straightFirst:false,straightLast:false,strokeColor:'#FF6347'});
 +
ll2 = brd.createElement('line',[i3,pp2],{name:'',straightFirst:false,straightLast:false,strokeColor:'#FF6347'});
 +
ll3 = brd.createElement('line',[i4,pp3],{name:'',straightFirst:false,straightLast:false,strokeColor:'#FF6347'});
 +
   
 +
i5 = brd.createElement('intersection',[ll1,ll2,0],{name:"P",fillColor:'#9932CC',strokeColor:'#9932CC'});
 +
</source>
  
 
[[Category:Examples]]
 
[[Category:Examples]]
 
[[Category:Geometry]]
 
[[Category:Geometry]]

Revision as of 13:18, 22 September 2009

Let ABC be a triangle and let the incircle intersect BC, CA, and AB at A', B', and C', respectively.

Let the circumcircles of AB'C', A'BC', and A'B'C intersect the circumcircle of ABC (apart from A, B, and C) at A, B, and C, respectively.

Then A'A, B'B, and C'C meet in one point, P.

The underlying JavaScript code

brd = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-1,4,12,-4], keepaspectratio:true});
p1 = brd.createElement('point', [0.5,-1.5] , {name:'A',fillColor:'red',strokeColor:'red'});
p2 = brd.createElement('point', [7.5,0.5] , {name:'B',fillColor:'red',strokeColor:'red'});
p3 = brd.createElement('point', [2,3] , {name:'C',fillColor:'red',strokeColor:'red'});
    
b1 = brd.createElement('line',['A','B'],{name:'',straightFirst:false,straightLast:false});
b2 = brd.createElement('line',['A','C'],{name:'',straightFirst:false,straightLast:false});
b3 = brd.createElement('line',['C','B'],{name:'',straightFirst:false,straightLast:false});
    
c1 = brd.createElement('circumcircle',['A','B','C'],{name:''});
c1[1].setProperty('strokeColor:#AAAAAA'); 
c1[0].hideElement(); // hide center of circle
    
l1 = brd.createElement('bisector',['B','A','C'],{name:'',visible:false}); // alpha
l2 = brd.createElement('bisector',['C','B','A'],{name:'',visible:false}); // beta
    
i1 = brd.createElement('intersection',[l1,l2,0],{name:'',visible:false});
pp1 = brd.createElement('perpendicularpoint',[i1,b1],{name:"C'",fillColor:'blue'});
pp2 = brd.createElement('perpendicularpoint',[i1,b2],{name:"B'",fillColor:'blue'});
pp3 = brd.createElement('perpendicularpoint',[i1,b3],{name:"A'",fillColor:'blue'});
    
c2 = brd.createElement('circumcircle',[pp1,pp2,pp3],{name:''});
c2[1].setProperty('strokeColor:#3CB371');
c2[0].hideElement();
    
c3 = brd.createElement('circumcircle',[p3,pp2,pp3],{name:''});
c3[1].setProperty('strokeColor:#FF8C00');
c3[0].hideElement();

c4 = brd.createElement('circumcircle',[p2,pp1,pp3],{name:''});
c4[1].setProperty('strokeColor:#FF8C00');
c4[0].hideElement();

c5 = brd.createElement('circumcircle',[p1,pp2,pp1],{name:''});
c5[1].setProperty('strokeColor:#FF8C00');
c5[0].hideElement();
    
i2 = brd.createElement('otherintersection',[c3[1],c1[1],p3],{name:"C''",fillColor:'blue'});
i3 = brd.createElement('otherintersection',[c4[1],c1[1],p2],{name:"B''",fillColor:'blue'});
i4 = brd.createElement('otherintersection',[c5[1],c1[1],p1],{name:"A''",fillColor:'blue'}); 

ll1 = brd.createElement('line',[i2,pp1],{name:'',straightFirst:false,straightLast:false,strokeColor:'#FF6347'});
ll2 = brd.createElement('line',[i3,pp2],{name:'',straightFirst:false,straightLast:false,strokeColor:'#FF6347'});
ll3 = brd.createElement('line',[i4,pp3],{name:'',straightFirst:false,straightLast:false,strokeColor:'#FF6347'});
    
i5 = brd.createElement('intersection',[ll1,ll2,0],{name:"P",fillColor:'#9932CC',strokeColor:'#9932CC'});