# Difference between revisions of "Circles on circles rotating in opposite directions"

Jump to navigationJump to search

This is an example of a parametric curve plot. It shows the orbit of a point on a circle. The circle rotates on a circle which again rotates on the unit circle. The resulting curve is described by the function

$[0,2\pi]\to{\mathbf R}^2, \quad t\mapsto {\cos(t)\choose \sin(t)}+c_1{\cos(f_1t)\choose \sin(f_1t)}+c_2{\sin(f_2t)\choose \cos(f_2t)}$

This example shows the seamless integration of JSXGraph into the web page.

Variation:

### External references

Epicycloidal curves have been used by the ancient greeks to describe the orbits of the planets, see

### The source code of this construction

This is the first experiment with the jQuery UI package. So, the code may not be optimized, yet. The main difficulty is to read the values of the sliders. This is done via four JavaScript variables $c1, c2, f1, f2$.

<div style="margin:5px">
<p>
<label for="c1">c1:</label>
<input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;"
min="0" max="100" value="60"
oninput="c1 = this.value*0.01; board.update();"
/>
<label for="f1">f1:</label>
<input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;"
min="1" max="100" value="7"
oninput="f1 = this.value; board.update();"
/>
<label for="c2">c2:</label>
<input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;"
min="0" max="100" value="0"
oninput="c2 = this.value*0.01;
board.updateQuality = board.BOARD_QUALITY_HIGH;
board.update();"
/>
<label for="f2">f2:</label>
<input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;"
min="1" max="100" value="17"
oninput="f2 = this.value; board.update();"
/>
</p>
</div>

<jsxgraph width="500" height="500" box="jxgbox">
board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-2.5,2.5,2.5,-2.5], keepaspectratio:true});
var c1 = 0.6;
var c2 = 0.0;
var f1 = 7;
var f2 = 17;
var c = board.create('curve', [
function(t) { return Math.cos(t)+ c1*Math.cos(f1*t)+ c2*Math.sin(f2*t);},
function(t) { return Math.sin(t)+ c1*Math.sin(f1*t)+ c2*Math.cos(f2*t);},
0,2.02*Math.PI], {strokeWidth:2});
</script>