# A 5-circle incidence theorem

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This is a visualization of A 5-Circle Incidence Theorem by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schröder, Mathematics Magazine, Volume 87, 2014 - Issue 1.

### The underlying JavaScript code

var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
var A = [], s = [], B = [], c = [], r = [], k;

var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'};
A[0] = board.create('point', [2.5, -3], attA);
A[1] = board.create('point', [2, 4], attA);
A[2] = board.create('point', [-2.5, 3], attA);
A[3] = board.create('point', [-4, -2], attA);
A[4] = board.create('point', [0, -4], attA);

for (k = 0; k < 5; k++) {
s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
}

var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'};
for (k = 0; k < 5; k++) {
B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB);
}

var attC = {strokeColor: '#aaaaaa', strokeWidth: 1};
for (k = 0; k < 5; k++) {
c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC);
}

var attR = {strokeColor: '#ff0000', strokeWidth: 2};
for (k = 0; k < 5; k++) {
r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR);
}