Epidemiology: The SIR model: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| Line 61: | Line 61: | ||
   I.setPos(0,s.X());  |    I.setPos(0,s.X());  | ||
   delta = 0.  |    delta = 0.3; // global  | ||
   t = 0.0;  // global  |    t = 0.0;  // global  | ||
   loop();  |    loop();  | ||
Revision as of 17:44, 21 January 2009
Simulation of differential equations with turtle graphics using JSXGraph.
SIR model without vital dynamics
A single epidemic outbreak is usually far more rapid than the vital dynamics of a population, thus, if the aim is to study the immediate consequences of a single epidemic, one may neglect the birth-death processes. In this case the SIR system described above can be expressed by the following set of differential equations:
- [math]\displaystyle{ \frac{dS}{dt} = - \beta I S }[/math]
 
- [math]\displaystyle{ \frac{dR}{dt} = \gamma I }[/math]
 
- [math]\displaystyle{ \frac{dI}{dt} = -(dS+dR) }[/math]
 
The lines in the JSXGraph-simulation below have the following meaning:
* Blue: Rate of susceptible population * Red: Rate of infected population * Green: Rate of recovered population (which means: immune, isolated or dead)