Tschirnhausen Cubic Catacaustic: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| Line 11: | Line 11: | ||
:<math> y = a4t^3 </math>  | :<math> y = a4t^3 </math>  | ||
You can drag the ''point of reflection''.  | |||
<jsxgraph width="600" height="600">  | <jsxgraph width="600" height="600">  | ||
(function(){  | (function(){  | ||
| Line 25: | Line 26: | ||
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});  | var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});  | ||
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'  | var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});  | ||
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});  | var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});  | ||
var infty = brd.create('point',  | var infty = brd.create('point',  | ||
| Line 49: | Line 50: | ||
                  -4, 4  |                   -4, 4  | ||
                  ],  |                   ],  | ||
                  {strokeWidth:  |                   {strokeWidth:3, strokeColor:'red'});  | ||
brd.unsuspendUpdate();  | brd.unsuspendUpdate();  | ||
})();  | })();  | ||
| Line 70: | Line 71: | ||
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});  | var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});  | ||
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});  | |||
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});  | |||
var infty = brd.create('point',  | |||
     [  | |||
       function(){   | |||
            var a = dir.stdform[1], b = dir.stdform[2],  | |||
                t = reflectionpoint.position,  | |||
                u = JXG.Math.Numerics.D(cubic.X)(t),   | |||
                v = JXG.Math.Numerics.D(cubic.Y)(t),  | |||
                dirx = a*v*v-2*b*u*v-a*u*u,  | |||
                diry = b*u*u-2*a*u*v-b*v*v;  | |||
            return [0, diry, -dirx];    | |||
       }  | |||
     ],{name:'', visible:false});  | |||
var reflection = brd.create('line',  | |||
       [reflectionpoint,infty],  | |||
       {strokeWidth:1, straightFirst:false, trace:true});  | |||
var cataustic = brd.create('curve',  | var cataustic = brd.create('curve',  | ||
| Line 76: | Line 95: | ||
                  -4, 4  |                   -4, 4  | ||
                  ],  |                   ],  | ||
                  {strokeWidth:  |                   {strokeWidth:3, strokeColor:'red'});  | ||
brd.unsuspendUpdate();  | brd.unsuspendUpdate();  | ||
</source>  | </source>  | ||
Revision as of 14:15, 13 January 2011
The Tschirnhausen cubic (black curve) is defined parametrically as
- [math]\displaystyle{ x = a3(t^2-3) }[/math]
 
- [math]\displaystyle{ y = at(t^2-3) }[/math]
 
Its catcaustic (red curve) with radiant point [math]\displaystyle{ (-8a,p) }[/math] is the semicubical parabola with parametric equations
- [math]\displaystyle{ x = a6(t^2-1) }[/math]
 
- [math]\displaystyle{ y = a4t^3 }[/math]
 
You can drag the point of reflection.
References
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});
var cubic = brd.create('curve',
             [function(t){ return a.Value()*3*(t*t-3);},
              function(t){ return a.Value()*t*(t*t-3);},
              -5, 5
             ],
             {strokeWidth:1, strokeColor:'black'});
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});
var infty = brd.create('point',
     [
       function(){ 
            var a = dir.stdform[1], b = dir.stdform[2],
                t = reflectionpoint.position,
                u = JXG.Math.Numerics.D(cubic.X)(t), 
                v = JXG.Math.Numerics.D(cubic.Y)(t),
                dirx = a*v*v-2*b*u*v-a*u*u,
                diry = b*u*u-2*a*u*v-b*v*v;
            return [0, diry, -dirx];  
       }
     ],{name:'', visible:false});
var reflection = brd.create('line',
       [reflectionpoint,infty],
       {strokeWidth:1, straightFirst:false, trace:true});
var cataustic = brd.create('curve',
                 [function(t){ return a.Value()*6*(t*t-1);},
                  function(t){ return a.Value()*4*t*t*t;},
                 -4, 4
                 ],
                 {strokeWidth:3, strokeColor:'red'});
brd.unsuspendUpdate();