A 5-circle incidence theorem: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs) No edit summary | A WASSERMANN (talk | contribs) No edit summary | ||
| (14 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| This is a visualization of ''A 5-Circle Incidence Theorem'' by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schröder, | |||
| [https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20 Mathematics Magazine, Volume 87, 2014 - Issue 1]. | |||
| <jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||
| var  | var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | ||
| var A = [], s = [], B = [], k; | var A = [], s = [], B = [], c = [], r = [], k; | ||
| var attA = {name:'',strokeColor:'#7355ff',fillColor:'#7355ff'} | var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'}; | ||
| A[0] = board.create('point', [2.5, -3], attA); | |||
| A[0] =  | A[1] = board.create('point', [2, 4], attA); | ||
| A[2] = board.create('point', [-2.5, 3], attA); | |||
| A[1] =  | A[3] = board.create('point', [-4, -2], attA); | ||
| A[4] = board.create('point', [0, -4], attA); | |||
| A[ | |||
| for (k = 0; k < 5; k++) { | |||
|    s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1}); | |||
| } | |||
| var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'}; | |||
| for (k = 0; k < 5; k++) { | |||
|    B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB); | |||
| } | |||
| var attC = {strokeColor: '#aaaaaa', strokeWidth: 1}; | |||
| for (k = 0; k < 5; k++) { | for (k = 0; k < 5; k++) { | ||
|     c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC); | |||
| } | } | ||
| var attR = {strokeColor: '#ff0000', strokeWidth: 2}; | |||
| for (k = 0; k < 5; k++) { | |||
|    r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | |||
| } | |||
| </jsxgraph> | </jsxgraph> | ||
| ===The underlying JavaScript code=== | |||
| <source lang="javascript"> | |||
| var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | |||
| var A = [], s = [], B = [], c = [], r = [], k; | |||
| var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'}; | |||
| A[0] = board.create('point', [2.5, -3], attA); | |||
| A[1] = board.create('point', [2, 4], attA); | |||
| A[2] = board.create('point', [-2.5, 3], attA); | |||
| A[3] = board.create('point', [-4, -2], attA); | |||
| A[4] = board.create('point', [0, -4], attA); | |||
| for (k = 0; k < 5; k++) { | |||
|    s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1}); | |||
| } | |||
| var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'}; | |||
| for (k = 0; k < 5; k++) { | |||
|    B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB); | |||
| } | |||
| var attC = {strokeColor: '#aaaaaa', strokeWidth: 1}; | |||
| for (k = 0; k < 5; k++) { | |||
|    c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC); | |||
| } | |||
| var attR = {strokeColor: '#ff0000', strokeWidth: 2}; | |||
| for (k = 0; k < 5; k++) { | |||
|    r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | |||
| } | |||
| </source> | |||
| [[Category:Examples]] | |||
| [[Category:Geometry]] | |||
Latest revision as of 12:30, 13 August 2019
This is a visualization of A 5-Circle Incidence Theorem by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schröder, Mathematics Magazine, Volume 87, 2014 - Issue 1.
The underlying JavaScript code
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
var A = [], s = [], B = [], c = [], r = [], k;
var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'};
A[0] = board.create('point', [2.5, -3], attA);
A[1] = board.create('point', [2, 4], attA);
A[2] = board.create('point', [-2.5, 3], attA);
A[3] = board.create('point', [-4, -2], attA);
A[4] = board.create('point', [0, -4], attA);
for (k = 0; k < 5; k++) {
   s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
}
var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'};
for (k = 0; k < 5; k++) {
   B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB);
}
var attC = {strokeColor: '#aaaaaa', strokeWidth: 1};
for (k = 0; k < 5; k++) {
   c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC);
}
var attR = {strokeColor: '#ff0000', strokeWidth: 2};
for (k = 0; k < 5; k++) {
   r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR);
}
