Systems of differential equations: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs) No edit summary | A WASSERMANN (talk | contribs) No edit summary | ||
| (6 intermediate revisions by the same user not shown) | |||
| Line 12: | Line 12: | ||
| var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | ||
| var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | ||
| var P1 = brd.create('point',[ | var P1 = brd.create('point',[1,-1], {name:'(x_0,c_1)'}); | ||
| var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false}); | var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false}); | ||
| var P2 = brd.create('glider',[0 | var P2 = brd.create('glider',[1,-0.5,line], {name:'(x_0,c_2)'}); | ||
| function doIt() { | function doIt() { | ||
|    var txt1 =  |    var txt1 = document.getElementById("odeinput1").value; | ||
|    var txt2 =  |    var txt2 = document.getElementById("odeinput2").value; | ||
|    f =  | |||
|   var snip1 = brd.jc.snippet(txt1, true, 'x, y1, y2'); | |||
|   var snip2 = brd.jc.snippet(txt2, true, 'x, y1, y2'); | |||
|    f = function (x, yy) { | |||
|       return [snip1(x, yy[0], yy[1]), snip2(x, yy[0], yy[1])]; | |||
|   } | |||
|    brd.update(); |    brd.update(); | ||
| } | } | ||
| function ode() { | function ode() { | ||
|     return JXG.Math.Numerics.rungeKutta( |     return JXG.Math.Numerics.rungeKutta('heun', [P1.Y(),P2.Y()], [P1.X(), P1.X()+N.Value()], 200, f); | ||
| } | } | ||
| var g1 = brd. | var g1 = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2, name:'y_1', withLabel:false}); | ||
| var g2 = brd. | var g2 = brd.create('curve', [[0],[0]], {strokeColor:'black', strokeWidth:2, name:'y_2', withLabel:false}); | ||
| g1.updateDataArray = function() { | g1.updateDataArray = function() { | ||
|      var data = ode(); |      var data = ode(); | ||
|      var h = N.Value()/200; |      var h = N.Value()/200; | ||
|     var i; | |||
|      this.dataX = []; |      this.dataX = []; | ||
|      this.dataY = []; |      this.dataY = []; | ||
|      for( |      for(i=0; i<data.length; i++) { | ||
|          this.dataX[i] = P1.X()+i*h; |          this.dataX[i] = P1.X()+i*h; | ||
|          this.dataY[i] = data[i][0]; |          this.dataY[i] = data[i][0]; | ||
| Line 42: | Line 49: | ||
|      var data = ode(); |      var data = ode(); | ||
|      var h = N.Value()/200; |      var h = N.Value()/200; | ||
|     var i; | |||
|      this.dataX = []; |      this.dataX = []; | ||
|      this.dataY = []; |      this.dataY = []; | ||
|      for( |      for(i=0; i<data.length; i++) { | ||
|          this.dataX[i] = P2.X()+i*h; |          this.dataX[i] = P2.X()+i*h; | ||
|          this.dataY[i] = data[i][1]; |          this.dataY[i] = data[i][1]; | ||
| Line 70: | Line 79: | ||
| var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]}); | ||
| var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'}); | ||
| var P1 = brd.create('point',[ | var P1 = brd.create('point',[1,-1], {name:'(x_0,c_1)'}); | ||
| var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false}); | var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false}); | ||
| var P2 = brd.create('glider',[0 | var P2 = brd.create('glider',[1,-0.5,line], {name:'(x_0,c_2)'}); | ||
| function doIt() { | function doIt() { | ||
|    var txt1 =  |    var txt1 = document.getElementById("odeinput1").value; | ||
|    var txt2 =  |    var txt2 = document.getElementById("odeinput2").value; | ||
|    f =  | |||
|   var snip1 = brd.jc.snippet(txt1, true, 'x, y1, y2'); | |||
|   var snip2 = brd.jc.snippet(txt2, true, 'x, y1, y2'); | |||
|    f = function (x, yy) { | |||
|       return [snip1(x, yy[0], yy[1]), snip2(x, yy[0], yy[1])]; | |||
|   } | |||
|    brd.update(); |    brd.update(); | ||
| } | } | ||
| function ode() { | function ode() { | ||
|     return JXG.Math.Numerics.rungeKutta( |     return JXG.Math.Numerics.rungeKutta('heun', [P1.Y(),P2.Y()], [P1.X(), P1.X()+N.Value()], 200, f); | ||
| } | } | ||
| var g1 = brd. | var g1 = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2, name:'y_1', withLabel:false}); | ||
| var g2 = brd. | var g2 = brd.create('curve', [[0],[0]], {strokeColor:'black', strokeWidth:2, name:'y_2', withLabel:false}); | ||
| g1.updateDataArray = function() { | g1.updateDataArray = function() { | ||
|      var data = ode(); |      var data = ode(); | ||
|      var h = N.Value()/200; |      var h = N.Value()/200; | ||
|     var i; | |||
|      this.dataX = []; |      this.dataX = []; | ||
|      this.dataY = []; |      this.dataY = []; | ||
|      for( |      for(i=0; i<data.length; i++) { | ||
|          this.dataX[i] = P1.X()+i*h; |          this.dataX[i] = P1.X()+i*h; | ||
|          this.dataY[i] = data[i][0]; |          this.dataY[i] = data[i][0]; | ||
| Line 100: | Line 116: | ||
|      var data = ode(); |      var data = ode(); | ||
|      var h = N.Value()/200; |      var h = N.Value()/200; | ||
|     var i; | |||
|      this.dataX = []; |      this.dataX = []; | ||
|      this.dataY = []; |      this.dataY = []; | ||
|      for( |      for(i=0; i<data.length; i++) { | ||
|          this.dataX[i] = P2.X()+i*h; |          this.dataX[i] = P2.X()+i*h; | ||
|          this.dataY[i] = data[i][1]; |          this.dataY[i] = data[i][1]; | ||
Latest revision as of 11:34, 19 January 2017
Display solutions of the ordinary differential equation
- [math]\displaystyle{ y_1'= f_1(x,y_1,y_2) }[/math]
- [math]\displaystyle{ y_2'= f_2(x,y_1,y_2) }[/math]
with initial values [math]\displaystyle{ (x_0,c_1) }[/math], [math]\displaystyle{ (x_0,c_2) }[/math].
See also
- Differential equations
- Lotka-Volterra equations
- Epidemiology: The SIR model
- Population growth models
- Autocatalytic process
- Logistic process
The underlying JavaScript code
<form>
f<sub>1</sub>(x,y1,y2)=<input type="text" id="odeinput1" value="y1+y2"><br />
f<sub>2</sub>(x,y1,y2)=<input type="text" id="odeinput2" value="y2+1"><input type=button value="ok" onclick="doIt()">
</form>
var brd = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-11,11,11,-11]});
var N = brd.create('slider',[[-7,9.5],[7,9.5],[-15,10,15]], {name:'N'});
var P1 = brd.create('point',[1,-1], {name:'(x_0,c_1)'});
var line = brd.create('line',[function(){return -P1.X();},function(){return 1;},function(){return 0;}],{visible:false});
var P2 = brd.create('glider',[1,-0.5,line], {name:'(x_0,c_2)'});
function doIt() {
  var txt1 = document.getElementById("odeinput1").value;
  var txt2 = document.getElementById("odeinput2").value;
  var snip1 = brd.jc.snippet(txt1, true, 'x, y1, y2');
  var snip2 = brd.jc.snippet(txt2, true, 'x, y1, y2');
  f = function (x, yy) {
      return [snip1(x, yy[0], yy[1]), snip2(x, yy[0], yy[1])];
  }
  brd.update();
}
function ode() {
   return JXG.Math.Numerics.rungeKutta('heun', [P1.Y(),P2.Y()], [P1.X(), P1.X()+N.Value()], 200, f);
}
var g1 = brd.create('curve', [[0],[0]], {strokeColor:'red', strokeWidth:2, name:'y_1', withLabel:false});
var g2 = brd.create('curve', [[0],[0]], {strokeColor:'black', strokeWidth:2, name:'y_2', withLabel:false});
g1.updateDataArray = function() {
    var data = ode();
    var h = N.Value()/200;
    var i;
    this.dataX = [];
    this.dataY = [];
    for(i=0; i<data.length; i++) {
        this.dataX[i] = P1.X()+i*h;
        this.dataY[i] = data[i][0];
    }
};
g2.updateDataArray = function() {
    var data = ode();
    var h = N.Value()/200;
    var i;
    this.dataX = [];
    this.dataY = [];
    for(i=0; i<data.length; i++) {
        this.dataX[i] = P2.X()+i*h;
        this.dataY[i] = data[i][1];
    }
};
doIt();
