Takagi–Landsberg curve: Difference between revisions
| A WASSERMANN (talk | contribs) No edit summary | A WASSERMANN (talk | contribs) No edit summary | ||
| (13 intermediate revisions by 2 users not shown) | |||
| Line 3: | Line 3: | ||
| :<math>    {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n},</math> | :<math>    {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n},</math> | ||
| where <math>s(x)</math> is defined by  | where <math>s(x)</math> is defined by   | ||
| s(x)=\min_{n\in{\bold Z}}|x-n|,   | |||
| that is, <math>s(x)</math> is the distance from x to the nearest integer. The infinite sum defining <math>blanc(x)</math> converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous but nowhere differentiable. | |||
| The Takagi–Landsberg curve is a slight generalization, given by | The Takagi–Landsberg curve is a slight generalization, given by | ||
| Line 9: | Line 11: | ||
| :<math>    T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x)</math> | :<math>    T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x)</math> | ||
| for a parameter w; thus the blancmange curve is the case <math>w = 1 / 2</math> | for a parameter w; thus the blancmange curve is the case <math>w = 1 / 2</math>. For <math>w = 1 / 4</math>, one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes. | ||
| <jsxgraph width="500" height="500" box="box"> | <jsxgraph width="500" height="500" box="box"> | ||
|   var bd = JXG.JSXGraph.initBoard('box', {axis:true, |   var bd = JXG.JSXGraph.initBoard('box', {axis:true,boundingbox: [-0.05, 16, 1.27, -4]}); | ||
|   var  |   var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'}); | ||
|   var  |   var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'});   | ||
|   var  |   var s = function(x){ return Math.abs(x-Math.round(x)); }; | ||
|   var c = bd. |   var c = bd.create('functiongraph', [ | ||
|      function(x){ | |||
|         var n, su, wval; | |||
|         su = 0.0; | |||
|         wval = w.Value(); | |||
|         for (n=0;n<N.Value();n++) { | |||
|            su += Math.pow(wval,n)*s(Math.pow(2,n)*x); | |||
|         } | |||
|         return su; | |||
|      },0,1],{strokeColor:'red'});        | |||
| </jsxgraph> | </jsxgraph> | ||
| ===The JavaScript code to produce this picture=== | |||
| <source lang="javascript"> | |||
|  var bd = JXG.JSXGraph.initBoard('box', {axis:true,boundingbox: [-0.05, 16, 1.27, -4]}); | |||
|  var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'}); | |||
|  var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'});  | |||
|  var s = function(x){ return Math.abs(x-Math.round(x)); }; | |||
|  var c = bd.create('functiongraph', [ | |||
|      function(x){ | |||
|         var n, su, wval; | |||
|         su = 0.0; | |||
|         wval = w.Value(); | |||
|         for (n=0;n<N.Value();n++) { | |||
|            su += Math.pow(wval,n)*s(Math.pow(2,n)*x); | |||
|         } | |||
|         return su; | |||
|      },0,1],{strokeColor:'red'});       | |||
| </source> | |||
| ===References=== | |||
| * Teiji Takagi, "A Simple Example of a Continuous Function without Derivative", Proc. Phys. Math. Japan, (1903) Vol. 1, pp. 176-177. | |||
| ===External links=== | |||
| * [http://en.wikipedia.org/wiki/Blancmange_curve http://en.wikipedia.org/wiki/Blancmange_curve] | |||
| [[Category:Examples]] | |||
| [[Category:Curves]] | |||
Latest revision as of 07:56, 14 August 2025
The blancmange function is defined on the unit interval by
- [math]\displaystyle{ {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n}, }[/math]
where [math]\displaystyle{ s(x) }[/math] is defined by s(x)=\min_{n\in{\bold Z}}|x-n|, that is, [math]\displaystyle{ s(x) }[/math] is the distance from x to the nearest integer. The infinite sum defining [math]\displaystyle{ blanc(x) }[/math] converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous but nowhere differentiable.
The Takagi–Landsberg curve is a slight generalization, given by
- [math]\displaystyle{ T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x) }[/math]
for a parameter w; thus the blancmange curve is the case [math]\displaystyle{ w = 1 / 2 }[/math]. For [math]\displaystyle{ w = 1 / 4 }[/math], one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes.
The JavaScript code to produce this picture
 var bd = JXG.JSXGraph.initBoard('box', {axis:true,boundingbox: [-0.05, 16, 1.27, -4]});
 var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'});
 var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'}); 
 var s = function(x){ return Math.abs(x-Math.round(x)); };
 var c = bd.create('functiongraph', [
     function(x){
        var n, su, wval;
        su = 0.0;
        wval = w.Value();
        for (n=0;n<N.Value();n++) {
           su += Math.pow(wval,n)*s(Math.pow(2,n)*x);
        }
        return su;
     },0,1],{strokeColor:'red'});
References
- Teiji Takagi, "A Simple Example of a Continuous Function without Derivative", Proc. Phys. Math. Japan, (1903) Vol. 1, pp. 176-177.
