Takagi–Landsberg curve: Difference between revisions
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| (12 intermediate revisions by 2 users not shown) | |||
| Line 3: | Line 3: | ||
:<math>    {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n},</math>  | :<math>    {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n},</math>  | ||
where <math>s(x)</math> is defined by   | where <math>s(x)</math> is defined by    | ||
s(x)=\min_{n\in{\bold Z}}|x-n|,    | |||
that is, <math>s(x)</math> is the distance from x to the nearest integer. The infinite sum defining <math>blanc(x)</math> converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous but nowhere differentiable.  | |||
The Takagi–Landsberg curve is a slight generalization, given by  | The Takagi–Landsberg curve is a slight generalization, given by  | ||
| Line 9: | Line 11: | ||
:<math>    T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x)</math>  | :<math>    T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x)</math>  | ||
for a parameter w; thus the blancmange curve is the case <math>w = 1 / 2</math>  | for a parameter w; thus the blancmange curve is the case <math>w = 1 / 2</math>. For <math>w = 1 / 4</math>, one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes.  | ||
<jsxgraph width="500" height="500" box="box">  | <jsxgraph width="500" height="500" box="box">  | ||
  var bd = JXG.JSXGraph.initBoard('box', {axis:true,  |   var bd = JXG.JSXGraph.initBoard('box', {axis:true,boundingbox: [-0.05, 16, 1.27, -4]});  | ||
  var   |   var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'});  | ||
  var   |   var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'});    | ||
  var   |   var s = function(x){ return Math.abs(x-Math.round(x)); };  | ||
  var c = bd.  |   var c = bd.create('functiongraph', [  | ||
     function(x){  | |||
        var n, su, wval;  | |||
        su = 0.0;  | |||
        wval = w.Value();  | |||
        for (n=0;n<N.Value();n++) {  | |||
           su += Math.pow(wval,n)*s(Math.pow(2,n)*x);  | |||
        }  | |||
        return su;  | |||
     },0,1],{strokeColor:'red'});         | |||
</jsxgraph>  | </jsxgraph>  | ||
===The JavaScript code to produce this picture===  | |||
<source lang="javascript">  | |||
 var bd = JXG.JSXGraph.initBoard('box', {axis:true,boundingbox: [-0.05, 16, 1.27, -4]});  | |||
 var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'});  | |||
 var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'});   | |||
 var s = function(x){ return Math.abs(x-Math.round(x)); };  | |||
 var c = bd.create('functiongraph', [  | |||
     function(x){  | |||
        var n, su, wval;  | |||
        su = 0.0;  | |||
        wval = w.Value();  | |||
        for (n=0;n<N.Value();n++) {  | |||
           su += Math.pow(wval,n)*s(Math.pow(2,n)*x);  | |||
        }  | |||
        return su;  | |||
     },0,1],{strokeColor:'red'});        | |||
</source>  | |||
===References===  | |||
* Teiji Takagi, "A Simple Example of a Continuous Function without Derivative", Proc. Phys. Math. Japan, (1903) Vol. 1, pp. 176-177.  | |||
===External links===  | |||
* [http://en.wikipedia.org/wiki/Blancmange_curve http://en.wikipedia.org/wiki/Blancmange_curve]  | |||
[[Category:Examples]]  | |||
[[Category:Curves]]  | |||
Latest revision as of 07:56, 14 August 2025
The blancmange function is defined on the unit interval by
- [math]\displaystyle{ {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n}, }[/math]
 
where [math]\displaystyle{ s(x) }[/math] is defined by s(x)=\min_{n\in{\bold Z}}|x-n|, that is, [math]\displaystyle{ s(x) }[/math] is the distance from x to the nearest integer. The infinite sum defining [math]\displaystyle{ blanc(x) }[/math] converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous but nowhere differentiable.
The Takagi–Landsberg curve is a slight generalization, given by
- [math]\displaystyle{ T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x) }[/math]
 
for a parameter w; thus the blancmange curve is the case [math]\displaystyle{ w = 1 / 2 }[/math]. For [math]\displaystyle{ w = 1 / 4 }[/math], one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes.
The JavaScript code to produce this picture
 var bd = JXG.JSXGraph.initBoard('box', {axis:true,boundingbox: [-0.05, 16, 1.27, -4]});
 var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'});
 var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'}); 
 var s = function(x){ return Math.abs(x-Math.round(x)); };
 var c = bd.create('functiongraph', [
     function(x){
        var n, su, wval;
        su = 0.0;
        wval = w.Value();
        for (n=0;n<N.Value();n++) {
           su += Math.pow(wval,n)*s(Math.pow(2,n)*x);
        }
        return su;
     },0,1],{strokeColor:'red'});
References
- Teiji Takagi, "A Simple Example of a Continuous Function without Derivative", Proc. Phys. Math. Japan, (1903) Vol. 1, pp. 176-177.