Hyperbola III: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| (21 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
Example and visualization for principal axis transformation  | |||
<jsxgraph width="500" height="500">  | <jsxgraph width="500" height="500">  | ||
JXG.Options.label.autoPosition = true;  | JXG.Options.label.autoPosition = true;  | ||
| Line 9: | Line 10: | ||
const sq5 = Math.sqrt(5);  | const sq5 = Math.sqrt(5);  | ||
// Start with the Euclidean normal form of the quadric,  | |||
// because we easily can read off the focal points.  | |||
var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true});  | var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true});  | ||
var f2 = board.create('point', [0, sq5], {name:"f", fixed: true});  | var f2 = board.create('point', [0, sq5], {name:"f", fixed: true});  | ||
var p  = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true});  | var p  = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true});  | ||
var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true});  | var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true});  | ||
var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true});  | var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true});  | ||
var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true});  | var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true});  | ||
// Undo the principal axis transformation to recompute the original form of the quadric  | |||
var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'});  | var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'});  | ||
var t0 = board.create('transform', [-2, 1], {type: 'translate'});  | var t0 = board.create('transform', [-2, 1], {type: 'translate'});  | ||
t0.  | t0.bindTo([f1, f2, p, o, e1, e2]);  | ||
phi0.  | phi0.bindTo([f1, f2, p, o, e1, e2]);  | ||
var hyp = board.create('hyperbola', [f1, f2, p]);  | var hyp = board.create('hyperbola', [f1, f2, p]);  | ||
// Create transformed axes  | |||
var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'});  | var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'});  | ||
var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'});  | var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'});  | ||
board.update();  | board.update();  | ||
// Visualization of the principal axis transformation  | |||
var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'});  | var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'});  | ||
var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'});  | var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'});  | ||
var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }  | var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'});  | ||
var t = board.create('transform', [function(){ return f.Value()  | var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'});  | ||
phi.bindTo([f1, f2, p, e1, e2, o]);  | |||
t.bindTo([f1, f2, p, e1, e2, o]);  | |||
</jsxgraph>  | </jsxgraph>  | ||
=== The underlying JavaScript code ===  | === The underlying JavaScript code ===  | ||
<source lang="javascript">  | <source lang="javascript">  | ||
JXG.Options.label.autoPosition = true;  | |||
JXG.Options.text.fontSize = 16;  | |||
JXG.Options.line.strokeWidth = 0.8;  | |||
JXG.Options.point.size = 1;  | |||
var board = JXG.JSXGraph.initBoard('jxgbox', { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true});  | |||
const sq5 = Math.sqrt(5);  | |||
// Start with the Euclidean normal form of the quadric,  | |||
// because we easily can read off the focal points.  | |||
var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true});  | |||
var f2 = board.create('point', [0, sq5], {name:"f", fixed: true});  | |||
var p  = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true});  | |||
var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true});  | |||
var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true});  | |||
var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true});  | |||
// Undo the principal axis transformation to recompute the original form of the quadric  | |||
var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'});  | |||
var t0 = board.create('transform', [-2, 1], {type: 'translate'});  | |||
t0.bindTo([f1, f2, p, o, e1, e2]);  | |||
phi0.bindTo([f1, f2, p, o, e1, e2]);  | |||
var hyp = board.create('hyperbola', [f1, f2, p]);  | |||
// Create transformed axes  | |||
var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'});  | |||
var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'});  | |||
board.update();  | |||
// Visualization of the principal axis transformation  | |||
var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'});  | |||
var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'});  | |||
var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'});  | |||
var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'});  | |||
phi.bindTo([f1, f2, p, e1, e2, o]);  | |||
t.bindTo([f1, f2, p, e1, e2, o]);  | |||
</source>  | </source>  | ||
[[Category:Examples]]  | [[Category:Examples]]  | ||
[[Category:Geometry]]  | [[Category:Geometry]]  | ||
Latest revision as of 15:45, 6 July 2021
Example and visualization for principal axis transformation
The underlying JavaScript code
JXG.Options.label.autoPosition = true;
JXG.Options.text.fontSize = 16;
JXG.Options.line.strokeWidth = 0.8;
JXG.Options.point.size = 1;
var board = JXG.JSXGraph.initBoard('jxgbox', { boundingbox: [-5, 5, 5, -5], axis: true, showClearTraces: true});
const sq5 = Math.sqrt(5);
// Start with the Euclidean normal form of the quadric,
// because we easily can read off the focal points.
var f1 = board.create('point', [0, -sq5], {name:"f'", fixed: true});
var f2 = board.create('point', [0, sq5], {name:"f", fixed: true});
var p  = board.create('point', [2, Math.sqrt(2)], {name:"p", fixed: true});
var o = board.create('point', [0, 0], {withLabel:false, color: 'blue', fixed: true, trace:true});
var e1 = board.create('point', [1, 0], {withLabel:false, color: 'blue', fixed: true});
var e2 = board.create('point', [0, 1], {withLabel:false, color: 'blue', fixed: true});
// Undo the principal axis transformation to recompute the original form of the quadric
var phi0 = board.create('transform', [-Math.PI * 0.25], {type: 'rotate'});
var t0 = board.create('transform', [-2, 1], {type: 'translate'});
t0.bindTo([f1, f2, p, o, e1, e2]);
phi0.bindTo([f1, f2, p, o, e1, e2]);
var hyp = board.create('hyperbola', [f1, f2, p]);
// Create transformed axes
var ax_z1 = board.create('line', [o, e1], {lastArrow: true, strokeColor:'black'});
var ax_z2 = board.create('line', [o, e2], {lastArrow: true, strokeColor:'black'});
board.update();
// Visualization of the principal axis transformation
var alpha = board.create('slider', [[1,4], [3,4], [0, 0, 45]], {name:'α', unitLabel:'°'});
var f = board.create('slider', [[1,3.5], [3,3.5], [0, 0, 1]], {name:'f'});
var phi = board.create('transform', [function(){ return alpha.Value() * Math.PI / 180; }], {type: 'rotate'});
var t = board.create('transform', [function(){ return 2*f.Value(); }, function(){ return -f.Value(); }], {type: 'translate'});
phi.bindTo([f1, f2, p, e1, e2, o]);
t.bindTo([f1, f2, p, e1, e2, o]);