Circles on circles: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| (55 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
This is an example of a parametric curve plot. It shows the orbit of a point on a circle. The circle rotates on a circle which again rotates on the unit circle. The resulting curve is described by the function  | |||
:<math> [0,2\pi]\to{\mathbf R}^2, \quad t\mapsto {\cos(t)\choose \sin(t)}+c_1{\cos(f_1t)\choose \sin(f_1t)}+c_2{\cos(f_2t)\choose \sin(f_2t)}</math>  | |||
This example shows the seamless integration of JSXGraph into the web page.  | |||
<html>  | <html>  | ||
<  | <div style="margin:5px">  | ||
<  |   <p>  | ||
<  |     <label for="c1">c1:</label>  | ||
<  |     <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;"   | ||
<  |         min="0" max="100" value="60"   | ||
        oninput="c1 = this.value*0.01; board.update();"    | |||
    />  | |||
    <label for="f1">f1:</label>  | |||
    <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;"   | |||
        min="1" max="100" value="7"  | |||
        oninput="f1 = this.value; board.update();"   | |||
    />  | |||
    <label for="c2">c2:</label>  | |||
    <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;"   | |||
        min="0" max="100" value="0"  | |||
        oninput="c2 = this.value*0.01;   | |||
                  board.updateQuality = board.BOARD_QUALITY_HIGH;  | |||
                  board.update();"    | |||
    />  | |||
    <label for="f2">f2:</label>  | |||
    <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;"   | |||
        min="1" max="100" value="17"  | |||
        oninput="f2 = this.value; board.update();"   | |||
    />  | |||
  </p>  | |||
</div>  | |||
</html>  | |||
<jsxgraph width="500" height="500" box="jxgbox">  | |||
board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-2.5,2.5,2.5,-2.5], keepaspectratio:true});  | |||
var c1 = 0.6;  | |||
var c2 = 0.0;  | |||
var f1 = 7;  | |||
var f2 = 17;  | |||
var c = board.create('curve', [  | |||
              function(t) { return Math.cos(t)+ c1*Math.cos(f1*t)+ c2*Math.cos(f2*t);},  | |||
              function(t) { return Math.sin(t)+ c1*Math.sin(f1*t)+ c2*Math.sin(f2*t);},  | |||
              0,2.02*Math.PI], {strokeWidth:2});  | |||
</jsxgraph>  | |||
'''Variation:'''  | |||
* [[Circles on circles rotating in opposite directions]]  | |||
<  | ===External references===  | ||
Epicycloidal curves have been used by the ancient greeks to describe the orbits of the planets, see  | |||
* [http://arxiv.org/abs/chao-dyn/9907004 Giovanni Gallavotti: Quasi periodic motions from Hipparchus to Kolmogorov]  | |||
* [http://www.swisseduc.ch/mathematik/schwingungen/docs/kapitel3.pdf http://www.swisseduc.ch/mathematik/schwingungen/docs/kapitel3.pdf] for a detailed explanation in German (from [http://www.swisseduc.ch/mathematik/schwingungen/ http://www.swisseduc.ch/mathematik/schwingungen/]).  | |||
More on epicycloidal curves:  | |||
* [[Hypotrochoid]]  | |||
* [http://www.uni-graz.at/~fripert/kreise/index.html Experiments by Harald Fripertinger]  | |||
* [http://en.wikipedia.org/wiki/Epicycloid http://en.wikipedia.org/wiki/Epicycloid]  | |||
* [http://mathworld.wolfram.com/Epicycloid.html http://mathworld.wolfram.com/Epicycloid.html]  | |||
===The source code of this construction===  | |||
The main difficulty is to read the values of the sliders.   | |||
This is done via four JavaScript variables <math>c1, c2, f1, f2</math>.  | |||
<source lang="html4strict">  | |||
<div style="margin:5px">  | |||
   <p>  |    <p>  | ||
     <label for="c1">c1:</label>  |      <label for="c1">c1:</label>  | ||
     <input type="  |      <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;"    | ||
        min="0" max="100" value="60"   | |||
        oninput="c1 = this.value*0.01; board.update();"   | |||
    />  | |||
    <label for="f1">f1:</label>  | |||
    <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;"   | |||
        min="1" max="100" value="7"  | |||
        oninput="f1 = this.value; board.update();"   | |||
    />  | |||
    <label for="c2">c2:</label>  | |||
    <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;"   | |||
        min="0" max="100" value="0"  | |||
        oninput="c2 = this.value*0.01;   | |||
                  board.updateQuality = board.BOARD_QUALITY_HIGH;  | |||
                  board.update();"   | |||
    />  | |||
    <label for="f2">f2:</label>  | |||
    <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;"   | |||
        min="1" max="100" value="17"  | |||
        oninput="f2 = this.value; board.update();"   | |||
    />  | |||
   </p>  |    </p>  | ||
</div>  | </div>  | ||
<  | |||
<jsxgraph width="500" height="500" box="jxgbox">  | |||
board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-2.5,2.5,2.5,-2.5], keepaspectratio:true});  | |||
</  | var c1 = 0.6;  | ||
</  | var c2 = 0.0;   | ||
var f1 = 7;   | |||
var f2 = 17;  | |||
var c = board.create('curve', [  | |||
              function(t) { return Math.cos(t)+ c1*Math.cos(f1*t)+ c2*Math.cos(f2*t);},  | |||
              function(t) { return Math.sin(t)+ c1*Math.sin(f1*t)+ c2*Math.sin(f2*t);},  | |||
              0,2.02*Math.PI], {strokeWidth:2});  | |||
</jsxgraph>  | |||
</source>  | |||
[[Category:Examples]]  | |||
[[Category:Curves]]  | |||
Latest revision as of 12:18, 23 June 2020
This is an example of a parametric curve plot. It shows the orbit of a point on a circle. The circle rotates on a circle which again rotates on the unit circle. The resulting curve is described by the function
- [math]\displaystyle{ [0,2\pi]\to{\mathbf R}^2, \quad t\mapsto {\cos(t)\choose \sin(t)}+c_1{\cos(f_1t)\choose \sin(f_1t)}+c_2{\cos(f_2t)\choose \sin(f_2t)} }[/math]
 
This example shows the seamless integration of JSXGraph into the web page.
Variation:
External references
Epicycloidal curves have been used by the ancient greeks to describe the orbits of the planets, see
- Giovanni Gallavotti: Quasi periodic motions from Hipparchus to Kolmogorov
 - http://www.swisseduc.ch/mathematik/schwingungen/docs/kapitel3.pdf for a detailed explanation in German (from http://www.swisseduc.ch/mathematik/schwingungen/).
 
More on epicycloidal curves:
- Hypotrochoid
 - Experiments by Harald Fripertinger
 - http://en.wikipedia.org/wiki/Epicycloid
 - http://mathworld.wolfram.com/Epicycloid.html
 
The source code of this construction
The main difficulty is to read the values of the sliders. This is done via four JavaScript variables [math]\displaystyle{ c1, c2, f1, f2 }[/math].
<div style="margin:5px">
  <p>
    <label for="c1">c1:</label>
    <input type="range" id="c1" style="border:0; color:#f6931f; font-weight:bold;" 
        min="0" max="100" value="60" 
        oninput="c1 = this.value*0.01; board.update();" 
    />
    <label for="f1">f1:</label>
    <input type="range" id="f1" style="border:0; color:#f6931f; font-weight:bold;" 
        min="1" max="100" value="7"
        oninput="f1 = this.value; board.update();" 
    />
    <label for="c2">c2:</label>
    <input type="range" id="c2" style="border:0; color:#f6931f; font-weight:bold;" 
        min="0" max="100" value="0"
        oninput="c2 = this.value*0.01; 
                  board.updateQuality = board.BOARD_QUALITY_HIGH;
                  board.update();" 
    />
    <label for="f2">f2:</label>
    <input type="range" id="f2" style="border:0; color:#f6931f; font-weight:bold;" 
        min="1" max="100" value="17"
        oninput="f2 = this.value; board.update();" 
    />
  </p>
</div>
<jsxgraph width="500" height="500" box="jxgbox">
board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-2.5,2.5,2.5,-2.5], keepaspectratio:true});
var c1 = 0.6;
var c2 = 0.0; 
var f1 = 7; 
var f2 = 17;
var c = board.create('curve', [
              function(t) { return Math.cos(t)+ c1*Math.cos(f1*t)+ c2*Math.cos(f2*t);},
              function(t) { return Math.sin(t)+ c1*Math.sin(f1*t)+ c2*Math.sin(f2*t);},
              0,2.02*Math.PI], {strokeWidth:2});
</jsxgraph>