Vertex equations of a quadratic function and it's inverse

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

A parabola can be uniquely defined by its vertex $\displaystyle{ V=(v_x, v_y) }$ and one more point $\displaystyle{ P=(p_x, p_y) }$. The function term of the parabola then has the form

$\displaystyle{ y = a (x-v_x)^2 + v_y. }$

$\displaystyle{ a }$ can be determined by solving

$\displaystyle{ p_y = a (p_x-v_x)^2 + v_y }$ for $\displaystyle{ a }$ which gives
$\displaystyle{ a = (p_y - v_y) / (p_x - v_x)^2 . }$

JavaScript code

var b = JXG.JSXGraph.initBoard('box1', {boundingbox: [-5, 5, 5, -5], grid:true});
var v = b.create('point', [0,0], {name:'V'}),
p = b.create('point', [3,3], {name:'P'}),
f = b.create('functiongraph', [
function(x) {
var den = p.X()- v.X(),
a = (p.Y() - v.Y()) / (den * den);
return a * (x - v.X()) * (x - v.X()) + v.Y();
}]);

})();


Conversely, also the inverse quadratic function can be uniquely defined by its vertex $\displaystyle{ V }$ and one more point $\displaystyle{ P }$. The function term of the inverse function has the form

$\displaystyle{ y = \sqrt{(x-v_x)/a} + v_y. }$

$\displaystyle{ a }$ can be determined by solving

$\displaystyle{ p_y = \sqrt{(p_x-v_x)/a} + v_y }$ for $\displaystyle{ a }$ which gives
$\displaystyle{ a = (p_x - v_x) / (p_y - v_y)^2. }$

JavaScript code

var b = JXG.JSXGraph.initBoard('box2', {boundingbox: [-5, 5, 5, -5], grid:true});
var v = b.create('point', [0,0], {name:'V'}),
p = b.create('point', [3,3], {name:'P'}),
f = b.create('functiongraph', [
function(x) {
var den = p.Y()- v.Y(),
a = (p.X() - v.X()) / (den * den),
sign = (p.Y() >= 0) ? 1 : -1;
return sign * Math.sqrt((x - v.X()) / a) + v.Y();
}]);