Difference between revisions of "Vertex equations of a quadratic function and it's inverse"

From JSXGraph Wiki
Jump to: navigation, search
Line 1: Line 1:
A parabola can be uniquely defined by its vertex $V$ and one more point $P$.
+
A parabola can be uniquely defined by its vertex 'V' and one more point 'P'.
 
<jsxgraph width="300" height="300" box="box1">
 
<jsxgraph width="300" height="300" box="box1">
 
(function() {
 
(function() {

Revision as of 12:21, 16 December 2014

A parabola can be uniquely defined by its vertex 'V' and one more point 'P'.

JavaScript code

var b = JXG.JSXGraph.initBoard('box1', {boundingbox: [-5, 5, 5, -5], grid:true});
var v = b.create('point', [0,0], {name:'V'}),
    p = b.create('point', [3,3], {name:'P'}),
    f = b.create('functiongraph', [
             function(x) {
                 var den = p.X()- v.X(),
                     a = (p.Y() - v.Y()) / (den * den);
                 return a * (x - v.X()) * (x - v.X()) + v.Y();
             }]);

})();

JavaScript code

var b = JXG.JSXGraph.initBoard('box2', {boundingbox: [-5, 5, 5, -5], grid:true});
var v = b.create('point', [0,0], {name:'V'}),
    p = b.create('point', [3,3], {name:'P'}),
    f = b.create('functiongraph', [
             function(x) {
                 var den = p.Y()- v.Y(),
                     a = (p.X() - v.X()) / (den * den);
                 return Math.sqrt((x - v.X()) / a) + v.Y();
             }]);