Takagi–Landsberg curve

From JSXGraph Wiki
Revision as of 10:14, 25 March 2011 by A WASSERMANN (talk | contribs)
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The blancmange function is defined on the unit interval by

[math]\displaystyle{ {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n}, }[/math]

where [math]\displaystyle{ s(x) }[/math] is defined by [math]\displaystyle{ s(x)=\min_{n\in{\bold Z}}|x-n| }[/math], that is, [math]\displaystyle{ s(x) }[/math] is the distance from x to the nearest integer. The infinite sum defining [math]\displaystyle{ blanc(x) }[/math] converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous but nowhere differentiable.

The Takagi–Landsberg curve is a slight generalization, given by

[math]\displaystyle{ T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x) }[/math]

for a parameter w; thus the blancmange curve is the case [math]\displaystyle{ w = 1 / 2 }[/math]. For [math]\displaystyle{ w = 1 / 4 }[/math], one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes.


The JavaScript code to produce this picture

<jsxgraph width="500" height="500" box="box">
 var bd = JXG.JSXGraph.initBoard('box', {axis:true,originX: 25, originY: 400, unitX: 450, unitY: 25});
 var w = bd.create('slider', [[0,8],[0.8,8],[0,0.25,1.5]], {name:'w'});
 var N = bd.create('slider', [[0,7],[0.8,7],[0,5,40]], {name:'N'}); 
 var s = function(x){ return Math.abs(x-Math.round(x)); };
 var c = bd.create('functiongraph', [
     function(x){
        var n, su, wval;
        su = 0.0;
        wval = w.Value();
        for (n=0;n<N.Value();n++) {
           su += Math.pow(wval,n)*s(Math.pow(2,n)*x);
        }
        return su;
     },0,1],{strokeColor:'red'});      
</jsxgraph>

References

  • Teiji Takagi, "A Simple Example of a Continuous Function without Derivative", Proc. Phys. Math. Japan, (1903) Vol. 1, pp. 176-177.

External links