Difference between revisions of "Newton's root finding method"

From JSXGraph Wiki
Jump to: navigation, search
Line 15: Line 15:
 
<script type="text/javascript">
 
<script type="text/javascript">
 
// Initial function term
 
// Initial function term
//var term = function(x) { return x*x; };
+
var term = function(x) { return x*x; };
//var graph = function(x) { return term(x); };
+
var graph = function(x) { return term(x); };
var term, graph;
 
 
 
 
// Recursion depth
 
// Recursion depth
Line 35: Line 34:
 
var ax = board.create('axis', [[0,0], [1,0]], {strokeColor: 'black'});
 
var ax = board.create('axis', [[0,0], [1,0]], {strokeColor: 'black'});
 
var ay = board.create('axis', [[0,0], [0,1]], {strokeColor: 'black'});
 
var ay = board.create('axis', [[0,0], [0,1]], {strokeColor: 'black'});
 
newGraph(document.getElementById('graphterm').value);
 
 
  
 
var g = board.create('functiongraph', [function(x){return graph(x);}],{strokeWidth: 2, dash:0});
 
var g = board.create('functiongraph', [function(x){return graph(x);}],{strokeWidth: 2, dash:0});
 
var x = board.create('glider',[s,0,ax], {name: 'x_{0}', strokeColor: 'magenta', fillColor: 'yellow'});
 
var x = board.create('glider',[s,0,ax], {name: 'x_{0}', strokeColor: 'magenta', fillColor: 'yellow'});
  
 +
newGraph(document.getElementById('graphterm').value);
 
newton(x,steps);
 
newton(x,steps);
 
function xval(board) {
 
function xval(board) {

Revision as of 16:14, 3 February 2010

xo is the start value. Drag it.

You may change the function term here:
f(x) =