Difference between revisions of "Newton's root finding method"

From JSXGraph Wiki
Jump to navigationJump to search
Line 14: Line 14:
 
<tr><td>&nbsp;</td></tr>
 
<tr><td>&nbsp;</td></tr>
 
<script type="text/javascript">
 
<script type="text/javascript">
function newGraph(v) {
 
eval("term = function(x){ return "+v+";}");
 
graph = function(x) { return term(x); };
 
g.Y = function(x){ return term(x); };
 
g.updateCurve();
 
        board.update();
 
}
 
 
 
 
 
// Initial function term
 
// Initial function term
 
//var term = function(x) { return x*x; };
 
//var term = function(x) { return x*x; };
 
//var graph = function(x) { return term(x); };
 
//var graph = function(x) { return term(x); };
 
var term, graph;
 
var term, graph;
newGraph(document.getElementById('graphterm').value);
 
 
 
 
// Recursion depth
 
// Recursion depth
Line 46: Line 35:
 
var ax = board.create('axis', [[0,0], [1,0]], {strokeColor: 'black'});
 
var ax = board.create('axis', [[0,0], [1,0]], {strokeColor: 'black'});
 
var ay = board.create('axis', [[0,0], [0,1]], {strokeColor: 'black'});
 
var ay = board.create('axis', [[0,0], [0,1]], {strokeColor: 'black'});
 +
 +
newGraph(document.getElementById('graphterm').value);
 +
 +
 
var g = board.create('functiongraph', [function(x){return graph(x);}],{strokeWidth: 2, dash:0});
 
var g = board.create('functiongraph', [function(x){return graph(x);}],{strokeWidth: 2, dash:0});
 
var x = board.create('glider',[s,0,ax], {name: 'x_{0}', strokeColor: 'magenta', fillColor: 'yellow'});
 
var x = board.create('glider',[s,0,ax], {name: 'x_{0}', strokeColor: 'magenta', fillColor: 'yellow'});
Line 66: Line 59:
 
     }
 
     }
 
}
 
}
 +
function newGraph(v) {
 +
eval("term = function(x){ return "+v+";}");
 +
graph = function(x) { return term(x); };
 +
g.Y = function(x){ return term(x); };
 +
g.updateCurve();
 +
        board.update();
 +
}
 +
 +
 
</jsxgraph>
 
</jsxgraph>

Revision as of 16:14, 3 February 2010

xo is the start value. Drag it.

You may change the function term here:
f(x) =