Difference between revisions of "Mean Value Theorem"

From JSXGraph Wiki
Jump to: navigation, search
Line 17: Line 17:
 
         p[3] = board.createElement('point', [3,3], {style:4});
 
         p[3] = board.createElement('point', [3,3], {style:4});
 
         var f = board.lagrangePolynomial(p);
 
         var f = board.lagrangePolynomial(p);
    var graph = board.createElement('functiongraph', [f,-10, 10]);
+
        var graph = board.createElement('functiongraph', [f,-10, 10]);
  
    var g = function(x) {
+
        var g = function(x) {
        return board.D(f)(x)-(p[1].Y()-p[0].Y())/(p[1].X()-p[0].X());
+
            return board.D(f)(x)-(p[1].Y()-p[0].Y())/(p[1].X()-p[0].X());
 
         }
 
         }
  
     var r = board.createElement('glider', [
+
     var r = board.createElement('point', [
 
                     function() { return board.root(g,(p[0].X()+p[1].X())*0.5); },
 
                     function() { return board.root(g,(p[0].X()+p[1].X())*0.5); },
 
                     function() { return f(board.root(g,(p[0].X()+p[1].X())*0.5)); },  
 
                     function() { return f(board.root(g,(p[0].X()+p[1].X())*0.5)); },  
                     graph], {name:' ',style:6});
+
                     graph], {name:' ',style:6,fixed:true});
 
   var r2 = board.createElement('point', [function(){ return r.X()+0.01;},
 
   var r2 = board.createElement('point', [function(){ return r.X()+0.01;},
 
       function(){ return f(r.X()+0.01);}], {style:7,visible:false});
 
       function(){ return f(r.X()+0.01);}], {style:7,visible:false});

Revision as of 12:58, 10 March 2009

The underlying JavaScript code

        board = JXG.JSXGraph.initBoard('box', {originX: 250, originY: 250, unitX: 50, unitY: 25});
board.suspendUpdate();
        // Axes
        xax = board.createElement('axis', [[0,0], [1,0]], {});
        yax = board.createElement('axis', [[0,0], [0,1]], {});

        var p = [];
        p[0] = board.createElement('point', [-1,-2], {style:4});
        p[1] = board.createElement('point', [6,5], {style:4});
        p[2] = board.createElement('point', [-0.5,1], {style:4});
        p[3] = board.createElement('point', [3,3], {style:4});
        var f = board.lagrangePolynomial(p);
    var graph = board.createElement('functiongraph', [f, -10, 10]);

    var g = function(x) {
         return board.D(f)(x)-(p[1].Y()-p[0].Y())/(p[1].X()-p[0].X());
        }

    var r = board.createElement('point', [
                    function() { return board.root(g,(p[0].X()+p[1].X())*0.5); },
                    function() { return f(board.root(g,(p[0].X()+p[1].X())*0.5)); }], 
         {name:' ',style:6});
   var r2 = board.createElement('point', [function(){ return r.X()+0.01;},
      function(){ return f(r.X()+0.01);}], {style:7,visible:false});


line = board.createElement('line',[r,r2],{strokeColor:'#ff0000'});
line = board.createElement('line',[p[0],p[1]],{strokeColor:'#ff0000',dash:1});

board.unsuspendUpdate();