Difference between revisions of "Fermat's spiral"
From JSXGraph Wiki
Jump to navigationJump to searchA WASSERMANN (talk | contribs) |
|||
Line 5: | Line 5: | ||
with a real number <math>a</math>. | with a real number <math>a</math>. | ||
<jsxgraph width="500" height="500"> | <jsxgraph width="500" height="500"> | ||
− | var board = JXG.JSXGraph.initBoard('jxgbox', { | + | var board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox: [-10, 10, 10, -10]}); |
var a = board.create('slider', [[1,9],[5,9],[0,1,4]],{name:'a'}); | var a = board.create('slider', [[1,9],[5,9],[0,1,4]],{name:'a'}); | ||
var c1 = board.create('curve', [function(phi){return a.Value()*Math.sqrt(phi); }, [0, 0],0, 8*Math.PI], | var c1 = board.create('curve', [function(phi){return a.Value()*Math.sqrt(phi); }, [0, 0],0, 8*Math.PI], | ||
Line 14: | Line 14: | ||
===The JavaScript code to produce this picture=== | ===The JavaScript code to produce this picture=== | ||
<source lang="javascript"> | <source lang="javascript"> | ||
− | var board = JXG.JSXGraph.initBoard('jxgbox', { | + | var board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox: [-10, 10, 10, -10]}); |
var a = board.create('slider', [[1,9],[5,9],[0,1,4]],{name:'a'}); | var a = board.create('slider', [[1,9],[5,9],[0,1,4]],{name:'a'}); | ||
var c1 = board.create('curve', [function(phi){return a.Value()*Math.sqrt(phi); }, [0, 0],0, 8*Math.PI], | var c1 = board.create('curve', [function(phi){return a.Value()*Math.sqrt(phi); }, [0, 0],0, 8*Math.PI], |
Latest revision as of 15:11, 7 June 2011
It can be described in polar coordinates [math](r, \theta)[/math] by the equation
- [math]r = \pm a\theta^{1/2}\,[/math]
with a real number [math]a[/math].
The JavaScript code to produce this picture
var board = JXG.JSXGraph.initBoard('jxgbox', {boundingbox: [-10, 10, 10, -10]});
var a = board.create('slider', [[1,9],[5,9],[0,1,4]],{name:'a'});
var c1 = board.create('curve', [function(phi){return a.Value()*Math.sqrt(phi); }, [0, 0],0, 8*Math.PI],
{curveType:'polar', strokewidth:4});
var c2 = board.create('curve', [function(phi){return -a.Value()*Math.sqrt(phi); }, [0, 0],0, 8*Math.PI],
{curveType:'polar', strokewidth:4});