Difference between revisions of "Extended mean value theorem"
A WASSERMANN (talk | contribs) |
A WASSERMANN (talk | contribs) |
||
(14 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | The ''extended mean value theorem'' (also called ''Cauchy's mean value theorem'') is usually formulated as: | ||
+ | |||
+ | Let | ||
+ | :<math> f, g: [a,b] \to \mathbb{R}</math> | ||
+ | be continuous functions that are differentiable on the open interval <math>(a,b)</math>. | ||
+ | If <math>g'(x)\neq 0</math> for all <math>x\in(a,b)</math>, | ||
+ | then there exists a value <math>\xi \in (a,b)</math> such that | ||
+ | :<math> | ||
+ | \frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}. | ||
+ | </math> | ||
+ | |||
+ | '''Remark:''' | ||
+ | It seems to be easier to state the extended mean value theorem in the following form: | ||
+ | |||
+ | Let | ||
+ | :<math> f, g: [a,b] \to \mathbb{R}</math> | ||
+ | be continuous functions that are differentiable on the open interval <math>(a,b)</math>. | ||
+ | Then there exists a value <math>\xi \in (a,b)</math> such that | ||
+ | :<math> | ||
+ | f'(\xi)\cdot (g(b)-g(a)) = g'(\xi) \cdot (f(b)-f(a)). | ||
+ | </math> | ||
+ | This second formulation avoids the need that | ||
+ | <math>g'(x)\neq 0</math> for all <math>x\in(a,b)</math> and is therefore much easier to | ||
+ | handle numerically. | ||
+ | |||
+ | The proof is similar, just use the function | ||
+ | :<math> | ||
+ | h(x) = f(x)\cdot(g(b)-g(a)) - (g(x)-g(a))\cdot(f(b)-f(a)) | ||
+ | </math> | ||
+ | and apply Rolle's theorem. | ||
+ | |||
+ | '''Visualization:''' | ||
+ | The extended mean value theorem says that given the curve | ||
+ | :<math> C: [a,b]\to\mathbb{R}, \quad t \mapsto (f(t), g(t)) </math> | ||
+ | with the above prerequisites for <math>f</math> and <math>g</math>, | ||
+ | there exists a <math>\xi</math> such that the tangent to the curve in the point <math>C(\xi)</math> | ||
+ | is parallel to the secant through <math>C(a)</math> and <math>C(b)</math>. | ||
+ | |||
+ | |||
<jsxgraph width="600" height="400" box="box"> | <jsxgraph width="600" height="400" box="box"> | ||
var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true}); | var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true}); | ||
var p = []; | var p = []; | ||
− | p[0] = board.create('point', [ | + | p[0] = board.create('point', [0, -2], {size:2, name: 'C(a)'}); |
− | p[1] = board.create('point', [-1.5, 5], {size:2}); | + | p[1] = board.create('point', [-1.5, 5], {size:2, name: ''}); |
− | p[2] = board.create('point', [1,4], {size:2}); | + | p[2] = board.create('point', [1, 4], {size:2, name: ''}); |
− | p[3] = board.create('point', [3, | + | p[3] = board.create('point', [3, 3], {size:2, name: 'C(b)'}); |
// Curve | // Curve | ||
Line 20: | Line 59: | ||
// Usually, the extended mean value theorem is formulated as | // Usually, the extended mean value theorem is formulated as | ||
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y()) | // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y()) | ||
− | // We can avoid division by zero with | + | // We can avoid division by zero with the following formulation: |
var quot = function(t) { | var quot = function(t) { | ||
return df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X()); | return df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X()); | ||
Line 28: | Line 67: | ||
function() { return fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); }, | function() { return fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); }, | ||
function() { return fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); }, | function() { return fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); }, | ||
− | graph], {name: '', size: 4, fixed:true, color: 'blue'}); | + | graph], {name: 'C(ξ)', size: 4, fixed:true, color: 'blue'}); |
board.create('tangent', [r], {strokeColor:'#ff0000'}); | board.create('tangent', [r], {strokeColor:'#ff0000'}); | ||
Line 39: | Line 78: | ||
var p = []; | var p = []; | ||
− | p[0] = board.create('point', [ | + | p[0] = board.create('point', [0, -2], {size:2, name: 'C(a)'}); |
− | p[1] = board.create('point', [-1.5, 5], {size:2}); | + | p[1] = board.create('point', [-1.5, 5], {size:2, name: ''}); |
− | p[2] = board.create('point', [1,4], {size:2}); | + | p[2] = board.create('point', [1, 4], {size:2, name: ''}); |
− | p[3] = board.create('point', [3, | + | p[3] = board.create('point', [3, 3], {size:2, name: 'C(b)'}); |
// Curve | // Curve | ||
Line 56: | Line 95: | ||
// Usually, the extended mean value theorem is formulated as | // Usually, the extended mean value theorem is formulated as | ||
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y()) | // df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y()) | ||
− | // We can avoid division by zero with | + | // We can avoid division by zero with the following formulation: |
var quot = function(t) { | var quot = function(t) { | ||
return df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X()); | return df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X()); | ||
Line 64: | Line 103: | ||
function() { return fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); }, | function() { return fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); }, | ||
function() { return fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); }, | function() { return fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); }, | ||
− | graph], {name: '', size: 4, fixed:true, color: 'blue'}); | + | graph], {name: 'C(ξ)', size: 4, fixed:true, color: 'blue'}); |
board.create('tangent', [r], {strokeColor:'#ff0000'}); | board.create('tangent', [r], {strokeColor:'#ff0000'}); |
Latest revision as of 13:38, 4 February 2019
The extended mean value theorem (also called Cauchy's mean value theorem) is usually formulated as:
Let
- [math] f, g: [a,b] \to \mathbb{R}[/math]
be continuous functions that are differentiable on the open interval [math](a,b)[/math]. If [math]g'(x)\neq 0[/math] for all [math]x\in(a,b)[/math], then there exists a value [math]\xi \in (a,b)[/math] such that
- [math] \frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}. [/math]
Remark: It seems to be easier to state the extended mean value theorem in the following form:
Let
- [math] f, g: [a,b] \to \mathbb{R}[/math]
be continuous functions that are differentiable on the open interval [math](a,b)[/math]. Then there exists a value [math]\xi \in (a,b)[/math] such that
- [math] f'(\xi)\cdot (g(b)-g(a)) = g'(\xi) \cdot (f(b)-f(a)). [/math]
This second formulation avoids the need that [math]g'(x)\neq 0[/math] for all [math]x\in(a,b)[/math] and is therefore much easier to handle numerically.
The proof is similar, just use the function
- [math] h(x) = f(x)\cdot(g(b)-g(a)) - (g(x)-g(a))\cdot(f(b)-f(a)) [/math]
and apply Rolle's theorem.
Visualization: The extended mean value theorem says that given the curve
- [math] C: [a,b]\to\mathbb{R}, \quad t \mapsto (f(t), g(t)) [/math]
with the above prerequisites for [math]f[/math] and [math]g[/math], there exists a [math]\xi[/math] such that the tangent to the curve in the point [math]C(\xi)[/math] is parallel to the secant through [math]C(a)[/math] and [math]C(b)[/math].
The underlying JavaScript code
var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true});
var p = [];
p[0] = board.create('point', [0, -2], {size:2, name: 'C(a)'});
p[1] = board.create('point', [-1.5, 5], {size:2, name: ''});
p[2] = board.create('point', [1, 4], {size:2, name: ''});
p[3] = board.create('point', [3, 3], {size:2, name: 'C(b)'});
// Curve
var fg = JXG.Math.Numerics.Neville(p);
var graph = board.create('curve', fg, {strokeWidth:3, strokeOpacity:0.5});
// Secant
line = board.create('line', [p[0], p[3]], {strokeColor:'#ff0000', dash:1});
var df = JXG.Math.Numerics.D(fg[0]);
var dg = JXG.Math.Numerics.D(fg[1]);
// Usually, the extended mean value theorem is formulated as
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
// We can avoid division by zero with the following formulation:
var quot = function(t) {
return df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());
};
var r = board.create('glider', [
function() { return fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },
function() { return fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },
graph], {name: 'C(ξ)', size: 4, fixed:true, color: 'blue'});
board.create('tangent', [r], {strokeColor:'#ff0000'});