Discontinuous derivative: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 3: Line 3:
\begin{cases}
\begin{cases}
x^2\sin(1/x),& x\neq 0\\
x^2\sin(1/x),& x\neq 0\\
0, x=0
0,& x=0
\end{cases}\,.
\end{cases}\,.
</math>
</math>
<math>f</math> is a continous and differentiable.
<math>f</math> is a continous and differentiable.
But the derivative of <math>f</math> is the function
The derivative of <math>f</math> is the function
:<math>
:<math>
f': \mathbb{R} \to \mathbb{R}, x \mapsto
f': \mathbb{R} \to \mathbb{R}, x \mapsto
\begin{cases}
\begin{cases}
2\sin(1/x) - \cos(1/x), &x \neq 0\\
2\sin(1/x) - \cos(1/x), &x \neq 0\\
0, x=0
0,& x=0
\end{cases}\,.
\end{cases}\,.
</math>
</math>

Revision as of 09:02, 13 February 2019

Consider the function

[math]\displaystyle{ f: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} x^2\sin(1/x),& x\neq 0\\ 0,& x=0 \end{cases}\,. }[/math]

[math]\displaystyle{ f }[/math] is a continous and differentiable. The derivative of [math]\displaystyle{ f }[/math] is the function

[math]\displaystyle{ f': \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 2\sin(1/x) - \cos(1/x), &x \neq 0\\ 0,& x=0 \end{cases}\,. }[/math]

We observe that [math]\displaystyle{ f'(0) = 0 }[/math] but [math]\displaystyle{ \lim_{x\to0}f'(x) }[/math] does not exist.

Therefore, [math]\displaystyle{ f' }[/math] is an example of a derivative which is not continuous.

The underlying JavaScript code

var board = JXG.JSXGraph.initBoard('jxgbox', {axis:true, boundingbox:[-1/2,1/2,1/2,-1/2]});

var g = board.create('functiongraph', ["2*sin(1/x) - cos(1/x)"], {strokeColor: 'red'});
var f = board.create('functiongraph', ["x^2*sin(1/x)"], {strokeWidth:2});