Difference between revisions of "Differentiability"

From JSXGraph Wiki
Jump to: navigation, search
Line 7: Line 7:
  
 
<jsxgraph box="box" width="600" height="400">
 
<jsxgraph box="box" width="600" height="400">
JXG.Options.text.useMathJax = true;
+
//JXG.Options.text.useMathJax = true;
 
board = JXG.JSXGraph.initBoard('box', {
 
board = JXG.JSXGraph.initBoard('box', {
 
     boundingbox: [-5, 10, 7, -6],  
 
     boundingbox: [-5, 10, 7, -6],  
Line 34: Line 34:
 
      
 
      
 
var txt = board.create('text', [2, 7, function() {  
 
var txt = board.create('text', [2, 7, function() {  
         return '\\[ \\frac{' +  
+
         return '<math>\\[ \\frac{' +  
 
               fx.Y().toFixed(2) + '-(' + fx0.Y().toFixed(2) +  
 
               fx.Y().toFixed(2) + '-(' + fx0.Y().toFixed(2) +  
 
               ')}{' +  
 
               ')}{' +  
 
               fx.X().toFixed(2) + '-(' + fx0.X().toFixed(2) +
 
               fx.X().toFixed(2) + '-(' + fx0.X().toFixed(2) +
               ')} = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3) + '\\]';
+
               ')} = ' + ((fx.Y()-fx0.Y())/(fx.X()-fx0.X())).toFixed(3) + '\\]</math>';
 
     }]);
 
     }]);
  

Revision as of 21:31, 22 January 2019

If the function [math]f: D \to {\mathbb R}[/math] is differentiable in [math]x_0\in D[/math] then there is a function [math]f_1: D \to {\mathbb R}[/math] that is continuous in [math]x_0[/math] such that

[math] f(x) = f(x_0) + (x-x_0) f_1(x) [/math]


The underlying JavaScript code