Autocatalytic process: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 62: Line 62:
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'});
//var e = brd.createElement('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});


t.hideTurtle();
t.hideTurtle();
 
           
A = 5;          
A = 5;
tau = 0.3;
           
function clearturtle() {
function clearturtle() {
   t.cs();
   t.cs();
Line 73: Line 75:
              
              
function run() {
function run() {
   t.setPos(0,s.X());
   t.setPos(0,s.Value());
   t.setPenSize(4);
   t.setPenSize(4);
   delta = 0.1; // global
   dx = 0.1; // global
   x = 0.0;  // global
   x = 0.0;  // global
   loop();
   loop();
Line 81: Line 83:
              
              
function loop() {
function loop() {
   var y = alpha.X()*t.pos[1]*(A-t.pos[1])*delta; // Autocatalytic process
   var dy = alpha.Value()*t.pos[1]*(A-t.pos[1])*dx; // Autocatalytic process
   t.moveTo([delta+t.pos[0],y+t.pos[1]]);
   t.moveTo([dx+t.pos[0],dy+t.pos[1]]);
   x += delta;
   x += dx;
   if (x<20.0) {
   if (x<20.0) {
     setTimeout(loop,10);
     setTimeout(loop,10);

Revision as of 07:45, 23 June 2009

Autocatalytic population growth model

Here, in time [math]\displaystyle{ \Delta t }[/math] the population grows by [math]\displaystyle{ \alpha\cdot y \cdot(A-y) }[/math] elements: [math]\displaystyle{ \Delta y = \alpha\cdot y\cdot \Delta t \cdot(A-y) }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y \cdot(A-y) }[/math].

With [math]\displaystyle{ \Delta t\to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y \cdot (A-y) }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y \cdot (A-y) }[/math].

The initial population is [math]\displaystyle{ y(0)= s }[/math], [math]\displaystyle{ A := 5 }[/math].

The blue line is the simulation with [math]\displaystyle{ \Delta t = 0.1 }[/math].

Other models

The JavaScript code

<jsxgraph height="500" width="600" board="board"  box="box1">
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true});
var t = brd.createElement('turtle',[4,3,70]);
            
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
//var e = brd.createElement('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});

t.hideTurtle();
            
A = 5;
tau = 0.3;
            
function clearturtle() {
  t.cs();
  t.ht();
}
            
function run() {
  t.setPos(0,s.Value());
  t.setPenSize(4);
  dx = 0.1; // global
  x = 0.0;  // global
  loop();
}
             
function loop() {
  var dy = alpha.Value()*t.pos[1]*(A-t.pos[1])*dx; // Autocatalytic process
  t.moveTo([dx+t.pos[0],dy+t.pos[1]]);
  x += dx;
  if (x<20.0) {
     setTimeout(loop,10);
  }
}
</jsxgraph>