# Difference between revisions of "A 5-circle incidence theorem"

From JSXGraph Wiki

A WASSERMANN (talk | contribs) |
A WASSERMANN (talk | contribs) |
||

(One intermediate revision by the same user not shown) | |||

Line 1: | Line 1: | ||

− | This is a visualization of ''A 5-Circle Incidence Theorem'' by J. Chris Fisher, Larry Hoehn and Eberhard. M. | + | This is a visualization of ''A 5-Circle Incidence Theorem'' by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schröder, |

− | [https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20 Mathematics Magazine, Volume 87, 2014 - Issue 1] | + | [https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20 Mathematics Magazine, Volume 87, 2014 - Issue 1]. |

<jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||

var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | ||

Line 30: | Line 30: | ||

r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | ||

} | } | ||

+ | </jsxgraph> | ||

+ | |||

+ | ===The underlying JavaScript code=== | ||

+ | |||

+ | <source lang="javascript"> | ||

+ | var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | ||

+ | var A = [], s = [], B = [], c = [], r = [], k; | ||

+ | |||

+ | var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'}; | ||

+ | A[0] = board.create('point', [2.5, -3], attA); | ||

+ | A[1] = board.create('point', [2, 4], attA); | ||

+ | A[2] = board.create('point', [-2.5, 3], attA); | ||

+ | A[3] = board.create('point', [-4, -2], attA); | ||

+ | A[4] = board.create('point', [0, -4], attA); | ||

+ | |||

+ | for (k = 0; k < 5; k++) { | ||

+ | s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1}); | ||

+ | } | ||

+ | |||

+ | var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'}; | ||

+ | for (k = 0; k < 5; k++) { | ||

+ | B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB); | ||

+ | } | ||

+ | |||

+ | var attC = {strokeColor: '#aaaaaa', strokeWidth: 1}; | ||

+ | for (k = 0; k < 5; k++) { | ||

+ | c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC); | ||

+ | } | ||

+ | |||

+ | var attR = {strokeColor: '#ff0000', strokeWidth: 2}; | ||

+ | for (k = 0; k < 5; k++) { | ||

+ | r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | ||

+ | } | ||

+ | </source> | ||

− | + | [[Category:Examples]] | |

+ | [[Category:Geometry]] |

## Latest revision as of 13:30, 13 August 2019

This is a visualization of *A 5-Circle Incidence Theorem* by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schröder,
Mathematics Magazine, Volume 87, 2014 - Issue 1.

### The underlying JavaScript code

```
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
var A = [], s = [], B = [], c = [], r = [], k;
var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'};
A[0] = board.create('point', [2.5, -3], attA);
A[1] = board.create('point', [2, 4], attA);
A[2] = board.create('point', [-2.5, 3], attA);
A[3] = board.create('point', [-4, -2], attA);
A[4] = board.create('point', [0, -4], attA);
for (k = 0; k < 5; k++) {
s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
}
var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'};
for (k = 0; k < 5; k++) {
B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB);
}
var attC = {strokeColor: '#aaaaaa', strokeWidth: 1};
for (k = 0; k < 5; k++) {
c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC);
}
var attR = {strokeColor: '#ff0000', strokeWidth: 2};
for (k = 0; k < 5; k++) {
r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR);
}
```