Difference between revisions of "A 5-circle incidence theorem"

From JSXGraph Wiki
Jump to: navigation, search
Line 1: Line 1:
 +
This is a visualization of ''A 5-Circle Incidence Theorem'' by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schroeder,
 +
[Mathematics Magazine, Volume 87, 2014 - Issue 1](https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20)
 
<jsxgraph width="600" height="600">
 
<jsxgraph width="600" height="600">
 
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
 
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
Line 4: Line 6:
  
 
var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'};
 
var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'};
attA.name = "0";
 
 
A[0] = board.create('point', [2.5, -3], attA);
 
A[0] = board.create('point', [2.5, -3], attA);
attA.name = "1";
 
 
A[1] = board.create('point', [2, 4], attA);
 
A[1] = board.create('point', [2, 4], attA);
attA.name = "2";
 
 
A[2] = board.create('point', [-2.5, 3], attA);
 
A[2] = board.create('point', [-2.5, 3], attA);
 
attA.name = "3";
 
 
A[3] = board.create('point', [-4, -2], attA);
 
A[3] = board.create('point', [-4, -2], attA);
 
attA.name = "4";
 
 
A[4] = board.create('point', [0, -4], attA);
 
A[4] = board.create('point', [0, -4], attA);
  
Line 20: Line 15:
 
   s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
 
   s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
 
}
 
}
 
  
 
var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'};
 
var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'};
Line 36: Line 30:
 
   r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR);
 
   r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR);
 
}
 
}
 
 
  
 
</jsxgraph>
 
</jsxgraph>

Revision as of 13:24, 13 August 2019

This is a visualization of A 5-Circle Incidence Theorem by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schroeder, [Mathematics Magazine, Volume 87, 2014 - Issue 1](https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20)