Newton's root finding method: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 29: | Line 29: | ||
// Start value for x | // Start value for x | ||
var | var x_0 = 3; | ||
for (i = 0; i < steps; i++) { | for (i = 0; i < steps; i++) { | ||
Line 40: | Line 40: | ||
var i; | var i; | ||
var brd = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-5, 5, 5, -5], axis:true}); | var brd = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-5, 5, 5, -5], axis:true}); | ||
var ax = brd.defaultAxes.x; | var ax = brd.defaultAxes.x; | ||
var ay = brd.defaultAxes.y; | var ay = brd.defaultAxes.y; | ||
var g = brd.create('functiongraph', [term],{strokeWidth: 2 | var g = brd.create('functiongraph', [term], {strokeWidth: 2}); | ||
var x = brd.create('glider', [ | var x = brd.create('glider', [x_0, 0, ax], {name: 'x_{0}', color: 'magenta', size: 4}); | ||
newGraph(document.getElementById('graphterm').value); | newGraph(document.getElementById('graphterm').value); | ||
Line 52: | Line 50: | ||
function xval() { | function xval() { | ||
for (i = 0; i < steps; i++) | for (i = 0; i < steps; i++) { | ||
document.getElementById('xv' + i).innerHTML = (brd.select('x_{' + i + '}').X()).toFixed(14); | document.getElementById('xv' + i).innerHTML = (brd.select('x_{' + i + '}').X()).toFixed(14); | ||
} | |||
} | } | ||
Line 60: | Line 59: | ||
function newton(p, i, board) { | function newton(p, i, board) { | ||
board.suspendUpdate(); | board.suspendUpdate(); | ||
if(i>0) { | if(i > 0) { | ||
var f = board.create('glider',[function(){return p.X();}, function(){return g.Y(p.X())}, g], {name: '', style: 3, | var f = board.create('glider', [function(){ return p.X(); }, function(){ return g.Y(p.X()) }, g], { | ||
var l = board.create(' | name: '', style: 3, color: 'green'}); | ||
var t = board.create('tangent',[f],{strokeWidth: 0.5, strokeColor: '#0080c0', dash: 0}); | var l = board.create('segment', [p, f], {strokeWidth: 0.5, dash: 1, strokeColor: 'black'}); | ||
var x = board.create('intersection',[ax,t,0],{name: 'x_{'+(steps-i+1) + '}', style: 4, | var t = board.create('tangent', [f], {strokeWidth: 0.5, strokeColor: '#0080c0', dash: 0}); | ||
newton(x,--i, board); | var x = board.create('intersection', [ax, t, 0],{name: 'x_{' + (steps - i + 1) + '}', style: 4, color: 'red'}); | ||
newton(x, --i, board); | |||
} | } | ||
board.unsuspendUpdate(); | board.unsuspendUpdate(); | ||
} | } | ||
function newGraph(v) { | function newGraph(v) { | ||
g.generateTerm('x', 'x', v); | |||
brd.update(); | |||
} | } | ||
</jsxgraph> | </jsxgraph> |
Revision as of 13:26, 15 January 2021
xo is the start value. Drag it. You may change the function term here, Try also the following function terms:
-
sin(x)
-
exp(x)
-
2^x
-
1-2/(x*x)
The underlying JavaScript code
<table width="600" border="0" cellpadding="0" cellspacing="0">
x<sub>o</sub> is the start value. Drag it.
<p></p>
You may change the function term here:
<br>
<td><nobr>f(x) = </nobr></td>
<td>
<form>
<input style="border:none; background-color:#efefef;padding:5px;margin-left:2px;" type="text" id="graphterm" value="x*x*x/5" size="30"/>
<input type="button" value="set term" onClick="newGraph(document.getElementById('graphterm').value);">
</form>
</td>
<tr><td> </td></tr>
<script type="text/javascript">
// Initial function term
var term = function(x) { return x*x*x/5; };
var graph = function(x) { return term(x); };
// Recursion depth
var steps = 11;
// Start value
var s = 3;
for (i = 0; i < steps; i++) {
document.write('<tr><td><nobr>x<sub>' + i + '</sub> = </nobr></td><td><font id="xv' + i + '"></font></td></tr>');
}
</script>
</table>
var i;
var brd = JXG.JSXGraph.initBoard('jxgbox', {boundingbox:[-5,5,5,-5], axis:false});
var ax = brd.create('axis', [[0,0], [1,0]], {strokeColor: 'black'});
var ay = brd.create('axis', [[0,0], [0,1]], {strokeColor: 'black'});
var g = brd.create('functiongraph', [function(x){return graph(x);}],{strokeWidth: 2, dash:0});
var x = brd.create('glider',[s,0,ax], {name: 'x_{0}', strokeColor: 'magenta', fillColor: 'yellow'});
newGraph(document.getElementById('graphterm').value);
newton(x, steps, brd);
function xval() {
for (i = 0; i < steps; i++)
document.getElementById('xv' + i).innerHTML = (brd.select('x_{' + i + '}').X()).toFixed(14);
}
brd.addHook(xval);
function newton(p, i, board) {
board.suspendUpdate();
if(i>0) {
var f = board.create('glider',[function(){return p.X();}, function(){return graph(p.X())},g], {name: '', style: 3, strokeColor: 'green', fillColor: 'yellow'});
var l = board.create('line', [p,f],{strokeWidth: 0.5, dash: 1, straightFirst: false, straightLast: false, strokeColor: 'black'});
var t = board.create('tangent',[f],{strokeWidth: 0.5, strokeColor: '#0080c0', dash: 0});
var x = board.create('intersection',[ax,t,0],{name: 'x_{'+(steps-i+1) + '}', style: 4, strokeColor: 'magenta', fillColor: 'yellow'});
newton(x,--i, board);
}
board.unsuspendUpdate();
}
function newGraph(v) {
eval("term = function(x){ return "+v+";}");
graph = function(x) { return term(x); };
g.Y = function(x){ return term(x); };
g.updateCurve();
brd.update();
}