A 5-circle incidence theorem: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
This is a visualization of ''A 5-Circle Incidence Theorem'' by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schroeder, | This is a visualization of ''A 5-Circle Incidence Theorem'' by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schroeder, | ||
[https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20 Mathematics Magazine, Volume 87, 2014 - Issue 1] | [https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20 Mathematics Magazine, Volume 87, 2014 - Issue 1]. | ||
<jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | ||
Line 30: | Line 30: | ||
r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | ||
} | } | ||
</jsxgraph> | |||
===The underlying JavaScript code=== | |||
<source lang="javascript"> | |||
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | |||
var A = [], s = [], B = [], c = [], r = [], k; | |||
var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'}; | |||
A[0] = board.create('point', [2.5, -3], attA); | |||
A[1] = board.create('point', [2, 4], attA); | |||
A[2] = board.create('point', [-2.5, 3], attA); | |||
A[3] = board.create('point', [-4, -2], attA); | |||
A[4] = board.create('point', [0, -4], attA); | |||
for (k = 0; k < 5; k++) { | |||
s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1}); | |||
} | |||
var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'}; | |||
for (k = 0; k < 5; k++) { | |||
B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB); | |||
} | |||
var attC = {strokeColor: '#aaaaaa', strokeWidth: 1}; | |||
for (k = 0; k < 5; k++) { | |||
c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC); | |||
} | |||
var attR = {strokeColor: '#ff0000', strokeWidth: 2}; | |||
for (k = 0; k < 5; k++) { | |||
r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | |||
} | |||
</source> | |||
[[Category:Examples]] | |||
[[Category:Geometry]] |
Revision as of 12:27, 13 August 2019
This is a visualization of A 5-Circle Incidence Theorem by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schroeder, Mathematics Magazine, Volume 87, 2014 - Issue 1.
The underlying JavaScript code
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
var A = [], s = [], B = [], c = [], r = [], k;
var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'};
A[0] = board.create('point', [2.5, -3], attA);
A[1] = board.create('point', [2, 4], attA);
A[2] = board.create('point', [-2.5, 3], attA);
A[3] = board.create('point', [-4, -2], attA);
A[4] = board.create('point', [0, -4], attA);
for (k = 0; k < 5; k++) {
s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
}
var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'};
for (k = 0; k < 5; k++) {
B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB);
}
var attC = {strokeColor: '#aaaaaa', strokeWidth: 1};
for (k = 0; k < 5; k++) {
c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC);
}
var attR = {strokeColor: '#ff0000', strokeWidth: 2};
for (k = 0; k < 5; k++) {
r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR);
}