A 5-circle incidence theorem: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
This is a visualization of ''A 5-Circle Incidence Theorem'' by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schroeder, | |||
[Mathematics Magazine, Volume 87, 2014 - Issue 1](https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20) | |||
<jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]}); | ||
Line 4: | Line 6: | ||
var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'}; | var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'}; | ||
A[0] = board.create('point', [2.5, -3], attA); | A[0] = board.create('point', [2.5, -3], attA); | ||
A[1] = board.create('point', [2, 4], attA); | A[1] = board.create('point', [2, 4], attA); | ||
A[2] = board.create('point', [-2.5, 3], attA); | A[2] = board.create('point', [-2.5, 3], attA); | ||
A[3] = board.create('point', [-4, -2], attA); | A[3] = board.create('point', [-4, -2], attA); | ||
A[4] = board.create('point', [0, -4], attA); | A[4] = board.create('point', [0, -4], attA); | ||
Line 20: | Line 15: | ||
s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1}); | s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1}); | ||
} | } | ||
var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'}; | var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'}; | ||
Line 36: | Line 30: | ||
r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR); | ||
} | } | ||
</jsxgraph> | </jsxgraph> |
Revision as of 12:24, 13 August 2019
This is a visualization of A 5-Circle Incidence Theorem by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schroeder, [Mathematics Magazine, Volume 87, 2014 - Issue 1](https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20)