Population growth models: Difference between revisions
A WASSERMANN (talk | contribs) No edit summary  | 
				No edit summary  | 
				||
| Line 16: | Line 16: | ||
<jsxgraph height="500" width="600" board="board"  box="box1">  | <jsxgraph height="500" width="600" board="board"  box="box1">  | ||
var brd = JXG.JSXGraph.initBoard('box1', {  | var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.25, 12.5, 14.75, -12.5], axis:true});  | ||
var t = brd.create('turtle',[4,3,70]);  | var t = brd.create('turtle',[4,3,70]);  | ||
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});  | var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});  | ||
| Line 56: | Line 56: | ||
===The JavaScript code===  | ===The JavaScript code===  | ||
<source lang="  | <source lang="javascript">  | ||
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.25, 12.5, 14.75, -12.5], axis:true});  | |||
var brd = JXG.JSXGraph.initBoard('box1', {  | |||
var t = brd.create('turtle',[4,3,70]);  | var t = brd.create('turtle',[4,3,70]);  | ||
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});  | var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});  | ||
| Line 90: | Line 89: | ||
   }  |    }  | ||
}  | }  | ||
</source>  | </source>  | ||
Latest revision as of 11:50, 8 June 2011
Exponential population growth model
In time [math]\displaystyle{ \Delta t }[/math] the population consisting of [math]\displaystyle{ y }[/math] elements grows by [math]\displaystyle{ \alpha\cdot y }[/math] elements: [math]\displaystyle{ \Delta y = \alpha\cdot y\cdot \Delta t }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y }[/math].
With [math]\displaystyle{ \Delta t\to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y }[/math].
The initial population is [math]\displaystyle{ y(0)= s }[/math].
The red line shows the exact solution of the differential equation [math]\displaystyle{ y(t)=s\cdot e^{\alpha t} }[/math]. The blue line is the simulation with [math]\displaystyle{ \Delta t = 0.1 }[/math].
Other models
The JavaScript code
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.25, 12.5, 14.75, -12.5], axis:true});
var t = brd.create('turtle',[4,3,70]);
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});
t.hideTurtle();
            
var A = 5;
var tau = 0.3;
            
function clearturtle() {
  t.cs();
  t.ht();
}
            
function run() {
  t.setPos(0,s.Value());
  t.setPenSize(4);
  dx = 0.1; // global
  x = 0.0;  // global
  loop();
}
             
function loop() {
  var dy = alpha.Value()*t.Y()*dx;   // Exponential growth
  t.moveTo([dx+t.X(),dy+t.Y()]);
  x += dx;
  if (x<20.0) {
     setTimeout(loop,10);
  }
}