Polynomial curve of constant width: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 39: | Line 39: | ||
si = Math.sin(kk*phi*0.5); | si = Math.sin(kk*phi*0.5); | ||
p = aa*co*co+bb; | p = aa*co*co+bb; | ||
ps = -kk*co*si; | ps = -aa*kk*co*si; | ||
console.log(p*Math.cos | console.log(p*Math.cos(phi)); | ||
return p*Math.cos(phi)-ps*Math.sin(phi); | return p*Math.cos(phi)-ps*Math.sin(phi); | ||
}, | }, | ||
Line 53: | Line 53: | ||
si = Math.sin(kk*phi*0.5); | si = Math.sin(kk*phi*0.5); | ||
p = aa*co*co+bb; | p = aa*co*co+bb; | ||
ps = -kk*co*si; | ps = -aa*kk*co*si; | ||
return phi; //p*Math.sin(phi)+ps*Math.sin(phi); | return phi; //p*Math.sin(phi)+ps*Math.sin(phi); | ||
}, | }, |
Revision as of 09:42, 7 June 2011
The curve defined by
- [math]\displaystyle{ p(\phi) = a\cdot cos(k\cdot\phi/2)+b }[/math]
in polar form is smooth and of constant width for odd values of [math]\displaystyle{ k }[/math]. In the visuzalitaion with JSXGraph below [math]\displaystyle{ k }[/math] is determined
- [math]\displaystyle{ k = 2k'+1. }[/math]
References
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-2,2,2,-2], keepaspectratio:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-1,1.8],[1,1.8],[-5,0.20,5]], {name:'a'});
var b = brd.create('slider',[[-1,1.6],[1,1.6],[-5,1.15,10]], {name:'b'});
var k = brd.create('slider',[[-1,1.4],[1,1.4],[1,1,11]], {name:'k\'', snapWidth:1});
var p = brd.create('curve',[function(phi, suspendUpdate){
var kk, aa, bb;
if (!suspendUpdate) {
aa = a.Value();
bb = b.Value();
kk = 2*k.Value()+1;
}
var co = Math.cos(kk*phi*0.5);
return aa*co*co+bb;
},[0,0], 0,Math.PI*2], {curveType:'polar', strokeWidth:10, strokeColor:'#ad5544'});
brd.unsuspendUpdate();