Population growth models: Difference between revisions
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 60: | Line 60: | ||
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true}); | brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true}); | ||
var t = brd.createElement('turtle',[4,3,70]); | var t = brd.createElement('turtle',[4,3,70]); | ||
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | ||
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | ||
Line 66: | Line 65: | ||
t.hideTurtle(); | t.hideTurtle(); | ||
A = 5; | |||
tau = 0.3; | |||
function clearturtle() { | function clearturtle() { | ||
Line 81: | Line 83: | ||
function loop() { | function loop() { | ||
var dy = alpha.Value()*t. | var dy = alpha.Value()*t.Y()*dx; // Exponential growth | ||
t.moveTo([dx+t. | t.moveTo([dx+t.X(),dy+t.Y()]); | ||
x += dx; | x += dx; | ||
if (x<20.0) { | if (x<20.0) { | ||
setTimeout(loop,10); | setTimeout(loop,10); | ||
} | } | ||
} | } | ||
</jsxgraph> | </jsxgraph> |
Revision as of 07:50, 23 June 2009
Exponential population growth model
In time [math]\displaystyle{ \Delta t }[/math] the population consisting of [math]\displaystyle{ y }[/math] elements grows by [math]\displaystyle{ \alpha\cdot y }[/math] elements: [math]\displaystyle{ \Delta y = \alpha\cdot y\cdot \Delta t }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y }[/math].
With [math]\displaystyle{ \Delta t\to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y }[/math].
The initial population is [math]\displaystyle{ y(0)= s }[/math].
The red line shows the exact solution of the differential equation [math]\displaystyle{ y(t)=s\cdot e^{\alpha t} }[/math]. The blue line is the simulation with [math]\displaystyle{ \Delta t = 0.1 }[/math].
Other models
The JavaScript code
<jsxgraph height="500" width="600" board="board" box="box1">
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true});
var t = brd.createElement('turtle',[4,3,70]);
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
var e = brd.createElement('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});
t.hideTurtle();
A = 5;
tau = 0.3;
function clearturtle() {
t.cs();
t.ht();
}
function run() {
t.setPos(0,s.Value());
t.setPenSize(4);
dx = 0.1; // global
x = 0.0; // global
loop();
}
function loop() {
var dy = alpha.Value()*t.Y()*dx; // Exponential growth
t.moveTo([dx+t.X(),dy+t.Y()]);
x += dx;
if (x<20.0) {
setTimeout(loop,10);
}
}
</jsxgraph>