Epidemiology: The SIR model: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) |
||
Line 11: | Line 11: | ||
The lines in the JSXGraph-simulation have the following meaning: | The lines in the JSXGraph-simulation have the following meaning: | ||
* <span style="color:Blue">Blue: | * <span style="color:Blue">Blue: Rate of susceptible population</span><br> | ||
* <span style="color:red">Red: | * <span style="color:red">Red: Rate of infected population</span><br> | ||
* <span style="color:green">Green: | * <span style="color:green">Green: Rate of recovered population (which means: immune, isolated or dead)</span> | ||
<html> | |||
<link rel="stylesheet" type="text/css" href="http://jsxgraph.uni-bayreuth.de/distrib/jsxgraph.css" /> | |||
<script type="text/javascript" src="http://jsxgraph.uni-bayreuth.de/distrib/prototype.js"></script> | |||
<script type="text/javascript" src="http://jsxgraph.uni-bayreuth.de/distrib/jsxgraphcore.js"></script> | |||
<div id="box" class="jxgbox" style="width:600px; height:400px;"></div> | |||
<script language="JavaScript"> | |||
var brd = JXG.JSXGraph.initBoard('box', {originX: 20, originY: 300, unitX: 20, unitY: 250}); | |||
var S = brd.createElement('turtle',[],{strokeColor:'blue',strokeWidth:3}); | |||
var I = brd.createElement('turtle',[],{strokeColor:'red',strokeWidth:3}); | |||
var R = brd.createElement('turtle',[],{strokeColor:'green',strokeWidth:3}); | |||
var xaxis = brd.createElement('axis', [[0,0], [1,0]], {}); | |||
var yaxis = brd.createElement('axis', [[0,0], [0,1]], {}); | |||
var s = brd.createElement('slider', [[0,-0.5], [10,-0.5],[0,0.03,1]], {name:'s'}); | |||
brd.createElement('text', [12,-0.5, "initially infected population rate"]); | |||
var beta = brd.createElement('slider', [[0,-0.6], [10,-0.6],[0,0.5,1]], {name:'β'}); | |||
brd.createElement('text', [12,-0.6, "β: infection rate"]); | |||
var gamma = brd.createElement('slider', [[0,-0.7], [10,-0.7],[0,0.3,1]], {name:'γ'}); | |||
brd.createElement('text', [12,-0.7, "γ: recovery rate"]); | |||
brd.createElement('text', [12,-0.4, | |||
function() {return "S(t)="+brd.round(S.pos[1],3) +", I(t)="+brd.round(I.pos[1],3) +", R(t)="+brd.round(R.pos[1],3);}]); | |||
S.hideTurtle(); | |||
I.hideTurtle(); | |||
R.hideTurtle(); | |||
function clearturtle() { | |||
S.cs(); | |||
I.cs(); | |||
R.cs(); | |||
S.hideTurtle(); | |||
I.hideTurtle(); | |||
R.hideTurtle(); | |||
} | |||
function run() { | |||
S.setPos(0,1.0-s.Value()); | |||
R.setPos(0,0); | |||
I.setPos(0,s.X()); | |||
delta = 0.1; // global | |||
t = 0.0; // global | |||
loop(); | |||
} | |||
function turtleMove(turtle,dx,dy) { | |||
turtle.lookTo([1.0+turtle.pos[0],dy+turtle.pos[1]]); | |||
turtle.fd(dx*Math.sqrt(1+dy*dy)); | |||
} | |||
function loop() { | |||
var dS = -beta.Value()*S.pos[1]*I.pos[1]; | |||
var dR = gamma.Value()*I.pos[1]; | |||
var dI = -(dS+dR); | |||
turtleMove(S,delta,dS); | |||
turtleMove(R,delta,dR); | |||
turtleMove(I,delta,dI); | |||
t += delta; | |||
if (t<20.0 && I.pos[1]) { | |||
setTimeout(loop,10); | |||
} | |||
} | |||
</script> | |||
</html> |
Revision as of 17:34, 21 January 2009
Simulation of differential equations with turtle graphics using [JSXGraph].
SIR model without vital dynamics
A single epidemic outbreak is usually far more rapid than the vital dynamics of a population, thus, if the aim is to study the immediate consequences of a single epidemic, one may neglect the birth-death processes. In this case the SIR system described above can be expressed by the following set of differential equations:
- [math]\displaystyle{ \frac{dS}{dt} = - \beta I S }[/math]
- [math]\displaystyle{ \frac{dR}{dt} = \gamma I }[/math]
- [math]\displaystyle{ \frac{dI}{dt} = -(dS+dR) }[/math]
The lines in the JSXGraph-simulation have the following meaning:
* Blue: Rate of susceptible population
* Red: Rate of infected population
* Green: Rate of recovered population (which means: immune, isolated or dead)