Tschirnhausen Cubic Catacaustic: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| Line 4: | Line 4: | ||
:<math> y = at(t^2-3) </math>  | :<math> y = at(t^2-3) </math>  | ||
Its   | Its catacaustic (red curve) with radiant point <math>(-8a,p)</math>  | ||
is the semicubical parabola with parametric equations  | is the semicubical parabola with parametric equations  | ||
| Line 11: | Line 11: | ||
:<math> y = a4t^3 </math>  | :<math> y = a4t^3 </math>  | ||
The catacaustic is the envelope of the rays reflected by the Tschirnhausen cubic.  | |||
The ray's source is the ''radiant point''.  | |||
You can drag the ''point of reflection''.  | You can drag the ''point of reflection''.  | ||
<jsxgraph width="600" height="600">  | <jsxgraph width="600" height="600">  | ||
| Line 57: | Line 59: | ||
===References===  | ===References===  | ||
* [http://mathworld.wolfram.com/TschirnhausenCubicCatacaustic.html Weisstein, Eric W. "Tschirnhausen Cubic Catacaustic." From MathWorld--A Wolfram Web Resource.]  | * [http://mathworld.wolfram.com/TschirnhausenCubicCatacaustic.html Weisstein, Eric W. "Tschirnhausen Cubic Catacaustic." From MathWorld--A Wolfram Web Resource.]  | ||
* [http://en.wikipedia.org/wiki/Caustic_%28mathematics%29 Wikipedia on Caustics]  | |||
===The underlying JavaScript code===  | ===The underlying JavaScript code===  | ||
<source lang="javascript">  | <source lang="javascript">  | ||
Revision as of 14:19, 13 January 2011
The Tschirnhausen cubic (black curve) is defined parametrically as
- [math]\displaystyle{ x = a3(t^2-3) }[/math]
 
- [math]\displaystyle{ y = at(t^2-3) }[/math]
 
Its catacaustic (red curve) with radiant point [math]\displaystyle{ (-8a,p) }[/math] is the semicubical parabola with parametric equations
- [math]\displaystyle{ x = a6(t^2-1) }[/math]
 
- [math]\displaystyle{ y = a4t^3 }[/math]
 
The catacaustic is the envelope of the rays reflected by the Tschirnhausen cubic. The ray's source is the radiant point. You can drag the point of reflection.
References
- Weisstein, Eric W. "Tschirnhausen Cubic Catacaustic." From MathWorld--A Wolfram Web Resource.
 - Wikipedia on Caustics
 
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-10,10,10,-10], keepaspectratio:true, axis:true});
brd.suspendUpdate();
var a = brd.create('slider',[[-5,6],[5,6],[-5,1,5]], {name:'a'});
var cubic = brd.create('curve',
             [function(t){ return a.Value()*3*(t*t-3);},
              function(t){ return a.Value()*t*(t*t-3);},
              -5, 5
             ],
             {strokeWidth:1, strokeColor:'black'});
var radpoint = brd.create('point',[function(){ return -a.Value()*8;},0],{name:'radiant point'});
var reflectionpoint = brd.create('glider',[-7,1,cubic],{name:'point of reflection'});
var dir = brd.create('segment',[radpoint,reflectionpoint],{strokeWidth:1});
var infty = brd.create('point',
     [
       function(){ 
            var a = dir.stdform[1], b = dir.stdform[2],
                t = reflectionpoint.position,
                u = JXG.Math.Numerics.D(cubic.X)(t), 
                v = JXG.Math.Numerics.D(cubic.Y)(t),
                dirx = a*v*v-2*b*u*v-a*u*u,
                diry = b*u*u-2*a*u*v-b*v*v;
            return [0, diry, -dirx];  
       }
     ],{name:'', visible:false});
var reflection = brd.create('line',
       [reflectionpoint,infty],
       {strokeWidth:1, straightFirst:false, trace:true});
var cataustic = brd.create('curve',
                 [function(t){ return a.Value()*6*(t*t-1);},
                  function(t){ return a.Value()*4*t*t*t;},
                 -4, 4
                 ],
                 {strokeWidth:3, strokeColor:'red'});
brd.unsuspendUpdate();