Least-squares line fitting: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) No edit summary |
A WASSERMANN (talk | contribs) No edit summary |
||
Line 6: | Line 6: | ||
<jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true}); | var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true}); | ||
var i | brd.suspendUpdate(); | ||
if (true) { | |||
var i, p = [], angle, xr, yr, delta = 0.1; | |||
// Random points are constructed which lie roughly on a line | // Random points are constructed which lie roughly on a line | ||
// defined by y = 0.3*x+1. | // defined by y = 0.3*x+1. | ||
// delta*0.5 is the maximal distance in y-direction of the random | // delta*0.5 is the maximal distance in y-direction of the random | ||
// points from the line. | // points from the line. | ||
brd.suspendUpdate(); | brd.suspendUpdate(); | ||
for (i=0;i< | for (i=0;i<100;i++) { | ||
yr = 10*(Math.random()-0.5); | |||
xr = 0.*yr+delta*(Math.random()-0.5); | |||
p.push(brd.create('point',[xr, yr], {withLabel:false})); | |||
} | |||
} else { | |||
var i, p = [], angle, co, si, delta = 0.2; | |||
// Random points are constructed which lie roughly on a circle | |||
// of radius 4 having the origin as center. | |||
// delta*0.5 is the maximal distance in x- and y- direction of the random | |||
// points from the circle line. | |||
for (i=0;i<100;i++) { | |||
angle = Math.random()*2*Math.PI; | |||
co = 4*Math.cos(angle)+delta*(Math.random()-0.5); | |||
si = 4*Math.sin(angle)+delta*(Math.random()-0.5); | |||
p.push(brd.create('point',[co+2, si-1], {withLabel:false})); | |||
} | |||
} | } | ||
brd.unsuspendUpdate(); | brd.unsuspendUpdate(); | ||
var r = [], rbar = [], x = [], y = [], z = [], A = [[0,0,0],[0,0,0],[0,0,0]], n, d; | // | ||
// Ab hier wird der beste Kreis, bzw. die beste Gerade ermittelt. | |||
var j, r = [], rbar = [], x = [], y = [], z = [], A = [[0,0,0],[0,0,0],[0,0,0]], n, d, | |||
eigen, minIndex, minE, ev, c, xm, ym, zm, radius; | |||
n = p.length; | n = p.length; | ||
for (i=0;i<n;i++) { | for (i=0;i<n;i++) { | ||
Line 51: | Line 71: | ||
A[2][2] += r[i][2]*r[i][2]; | A[2][2] += r[i][2]*r[i][2]; | ||
} | } | ||
/* | |||
for (i=0;i<3;i++) { | for (i=0;i<3;i++) { | ||
for (j=0;j<3;j++) { | for (j=0;j<3;j++) { | ||
Line 56: | Line 77: | ||
} | } | ||
} | } | ||
*/ | */ | ||
eigen = JXG.Math.Numerics.Jacobi(A); | |||
minIndex = 0; | |||
minE = eigen[0][0][0]; | |||
for (j=1;j<3;j++) { | |||
if (eigen[0][j][j]<minE) { | |||
minIndex = j; | |||
minE = eigen[0][j][j]; | |||
} | |||
} | |||
ev = [eigen[1][0][minIndex],eigen[1][1][minIndex],eigen[1][2][minIndex]]; | |||
c = -(rbar[0]*ev[0]+rbar[1]*ev[1]+rbar[2]*ev[2]); | |||
xm = -ev[1]; | |||
ym = -ev[2]; | |||
zm = 2.0*(c+ev[0]); | |||
console.log(c, c+ev[0]); | |||
if (Math.abs(c)<0.01) { | |||
brd.create('line',[zm,xm,ym], {strokeColor:'green'}); | |||
} else { | |||
var radius = Math.sqrt((xm*xm+ym*ym-2*c*zm)/(zm*zm)); | |||
brd.create('circle',[[zm,xm,ym],radius]); | |||
} | } | ||
</jsxgraph> | </jsxgraph> | ||
Revision as of 18:00, 9 November 2010
This little JXSGraph application finds the line - described by homogeneous coordinates [a,b,c] - that minimizes
- [math]\displaystyle{ \sum_{i=1}^n (ax_i+by_i+cz_i)^2. }[/math]
Coming soon...