Takagi–Landsberg curve: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 13: Line 13:


<jsxgraph width="500" height="500" box="box">
<jsxgraph width="500" height="500" box="box">
  var bd = JXG.JSXGraph.initBoard('box', {axis:true,originX: 250, originY: 250, unitX: 25, unitY: 25});
  var bd = JXG.JSXGraph.initBoard('box', {axis:true,originX: 25, originY: 250, unitX: 200, unitY: 25});
  var f = bd.createElement('slider', [[1,8],[5,8],[0,4,8]]);
  var w = bd.createElement('slider', [[1,8],[5,8],[0,4,6]], {name:'w'});
  var len = bd.createElement('slider', [[1,7],[5,7],[0,2,2]]);  
  var N = bd.createElement('slider', [[1,7],[5,7],[0,5,20]], {name:'N'});  
  var k = bd.createElement('slider', [[1,6],[5,6],[0,2,10]]);
  var s = function(x){ return Math.abs(x-Math.round(x)); };
  var c = bd.createElement('curve', [function(phi){return f.Value()*Math.cos(Math.floor(k.Value())*phi); }, [0, 0],0, function(){return len.Value()*Math.PI;}],
  var c = bd.createElement('functiongraph', [
            {curveType:'polar', strokewidth:2});       
    function(x){
        var n, su, wval;
        su = 0.0;
        wval = w.Value();
        for (n=0;n<N.value();n++) {
          su += Math.pow(wval,n)*s(Math.pow(2,n)*x);
        }
        return su;
    },0,1}]);       
</jsxgraph>
</jsxgraph>

Revision as of 17:33, 18 March 2009

The blancmange function is defined on the unit interval by

[math]\displaystyle{ {\rm blanc}(x) = \sum_{n=0}^\infty {s(2^{n}x)\over 2^n}, }[/math]

where [math]\displaystyle{ s(x) }[/math] is defined by [math]\displaystyle{ s(x)=\min_{n\in{\bold Z}}|x-n| }[/math], that is, [math]\displaystyle{ s(x) }[/math] is the distance from x to the nearest integer. The infinite sum defining [math]\displaystyle{ blanc(x) }[/math] converges absolutely for all x, but the resulting curve is a fractal. The blancmange function is continuous but nowhere differentiable.

The Takagi–Landsberg curve is a slight generalization, given by

[math]\displaystyle{ T_w(x) = \sum_{n=0}^\infty w^n s(2^{n}x) }[/math]

for a parameter w; thus the blancmange curve is the case [math]\displaystyle{ w = 1 / 2 }[/math]. For [math]\displaystyle{ w = 1 / 4 }[/math], one obtains the parabola: the construction of the parabola by midpoint subdivision was described by Archimedes.