Epidemiology: The SIR model: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
Line 39: Line 39:
brd.createElement('text', [12,-0.7, "γ: recovery rate"]);
brd.createElement('text', [12,-0.7, "γ: recovery rate"]);


 
brd.createElement('text', [12,-0.4,
        function() {return "S(t)="+brd.round(S.pos[1],3) +", I(t)="+brd.round(I.pos[1],3) +", R(t)="+brd.round(R.pos[1],3);}]);
           
S.hideTurtle();
S.hideTurtle();
I.hideTurtle();
I.hideTurtle();
Line 45: Line 47:
              
              
function clearturtle() {
function clearturtle() {
S.cs();
  S.cs();
I.cs();
  I.cs();
R.cs();
  R.cs();
S.hideTurtle();
  S.hideTurtle();
I.hideTurtle();
  I.hideTurtle();
R.hideTurtle();
  R.hideTurtle();
}
}
              
              
function run() {
function run() {
S.setPos(0,1.0-s.Value());
  S.setPos(0,1.0-s.Value());
R.setPos(0,0);
  R.setPos(0,0);
I.setPos(0,s.X());
  I.setPos(0,s.X());
                  
                  
delta = 0.1; // global
  delta = 0.1; // global
t = 0.0;  // global
  t = 0.0;  // global
loop();
  loop();
}
}
              
              
function turtleMove(turtle,dx,dy) {
function turtleMove(turtle,dx,dy) {
turtle.lookTo([1.0+turtle.pos[0],dy+turtle.pos[1]]);
  turtle.lookTo([1.0+turtle.pos[0],dy+turtle.pos[1]]);
turtle.fd(dx*Math.sqrt(1+dy*dy));
  turtle.fd(dx*Math.sqrt(1+dy*dy));
}
}
              
              
function loop() {
function loop() {
var dS = -beta.Value()*S.pos[1]*I.pos[1];
  var dS = -beta.Value()*S.pos[1]*I.pos[1];
var dR = gamma.Value()*I.pos[1];
  var dR = gamma.Value()*I.pos[1];
var dI = -(dS+dR);
  var dI = -(dS+dR);
turtleMove(S,delta,dS);
  turtleMove(S,delta,dS);
turtleMove(R,delta,dR);
  turtleMove(R,delta,dR);
turtleMove(I,delta,dI);
  turtleMove(I,delta,dI);
                  
                  
t += delta;
  t += delta;
if (t<20.0 && I.pos[1]) {
  if (t<20.0 && I.pos[1]) {
setTimeout(loop,10);
    setTimeout(loop,10);
}
  }
}
}
</script>
</script>
</html>
</html>

Revision as of 17:40, 21 January 2009

Simulation of differential equations with turtle graphics using JSXGraph.

SIR model without vital dynamics

A single epidemic outbreak is usually far more rapid than the vital dynamics of a population, thus, if the aim is to study the immediate consequences of a single epidemic, one may neglect the birth-death processes. In this case the SIR system described above can be expressed by the following set of differential equations:

[math]\displaystyle{ \frac{dS}{dt} = - \beta I S }[/math]
[math]\displaystyle{ \frac{dR}{dt} = \gamma I }[/math]
[math]\displaystyle{ \frac{dI}{dt} = -(dS+dR) }[/math]

The lines in the JSXGraph-simulation below have the following meaning:

* Blue: Rate of susceptible population
* Red: Rate of infected population
* Green: Rate of recovered population (which means: immune, isolated or dead)