A 5-circle incidence theorem: Difference between revisions

From JSXGraph Wiki
No edit summary
No edit summary
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
This is a visualization of ''A 5-Circle Incidence Theorem'' by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schröder,
[https://www.tandfonline.com/doi/abs/10.4169/math.mag.87.1.44?journalCode=umma20 Mathematics Magazine, Volume 87, 2014 - Issue 1].
<jsxgraph width="600" height="600">
<jsxgraph width="600" height="600">
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
var A = [], s = [], B = [], k;
var A = [], s = [], B = [], c = [], r = [], k;


var attA = {name:'',strokeColor:'#7355ff',fillColor:'#7355ff'};
var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'};
attA.name = "0";
A[0] = board.create('point', [2.5, -3], attA);
A[0] = brd.create('point', [2.5, -3], attA);
A[1] = board.create('point', [2, 4], attA);
attA.name = "1";
A[2] = board.create('point', [-2.5, 3], attA);
A[1] = brd.create('point', [2, 4], attA);
A[3] = board.create('point', [-4, -2], attA);
attA.name = "2";
A[4] = board.create('point', [0, -4], attA);
A[2] = brd.create('point', [-2.5, 3], attA);


attA.name = "3";
for (k = 0; k < 5; k++) {
A[3] = brd.create('point', [-4, -2], attA);
  s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
}


attA.name = "4";
var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'};
A[4] = brd.create('point', [-2, -2], attA);
for (k = 0; k < 5; k++) {
  B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB);
}


var attC = {strokeColor: '#aaaaaa', strokeWidth: 1};
for (k = 0; k < 5; k++) {
for (k = 0; k < 5; k++) {
   s[k] = brd.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
   c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC);
}
}


var attR = {strokeColor: '#ff0000', strokeWidth: 2};
for (k = 0; k < 5; k++) {
  r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR);
}
</jsxgraph>
</jsxgraph>
===The underlying JavaScript code===
<source lang="javascript">
var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
var A = [], s = [], B = [], c = [], r = [], k;
var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'};
A[0] = board.create('point', [2.5, -3], attA);
A[1] = board.create('point', [2, 4], attA);
A[2] = board.create('point', [-2.5, 3], attA);
A[3] = board.create('point', [-4, -2], attA);
A[4] = board.create('point', [0, -4], attA);
for (k = 0; k < 5; k++) {
  s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
}
var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'};
for (k = 0; k < 5; k++) {
  B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB);
}
var attC = {strokeColor: '#aaaaaa', strokeWidth: 1};
for (k = 0; k < 5; k++) {
  c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC);
}
var attR = {strokeColor: '#ff0000', strokeWidth: 2};
for (k = 0; k < 5; k++) {
  r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR);
}
</source>
[[Category:Examples]]
[[Category:Geometry]]

Latest revision as of 12:30, 13 August 2019

This is a visualization of A 5-Circle Incidence Theorem by J. Chris Fisher, Larry Hoehn and Eberhard. M. Schröder, Mathematics Magazine, Volume 87, 2014 - Issue 1.

The underlying JavaScript code

var board = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5]});
var A = [], s = [], B = [], c = [], r = [], k;

var attA = {name:'',strokeColor: '#7355ff', fillColor: '#7355ff'};
A[0] = board.create('point', [2.5, -3], attA);
A[1] = board.create('point', [2, 4], attA);
A[2] = board.create('point', [-2.5, 3], attA);
A[3] = board.create('point', [-4, -2], attA);
A[4] = board.create('point', [0, -4], attA);

for (k = 0; k < 5; k++) {
   s[k] = board.create('segment',[A[k], A[(k + 2) % 5]],{strokeColor:'blue',strokeWidth:1});
}

var attB = {name: '', strokeColor: '#EA0000', fillColor: '#EA0000'};
for (k = 0; k < 5; k++) {
   B[k] = board.create('intersection', [s[k], s[(k-1+5)%5], 0], attB);
}

var attC = {strokeColor: '#aaaaaa', strokeWidth: 1};
for (k = 0; k < 5; k++) {
   c[k] = board.create('circle', [A[k], B[k], A[(k+1)%5]], attC);
}

var attR = {strokeColor: '#ff0000', strokeWidth: 2};
for (k = 0; k < 5; k++) {
   r[k] = board.create('radicalaxis', [c[k], c[(k-1+5)%5]], attR);
}