Least-squares line fitting: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs) No edit summary | A WASSERMANN (talk | contribs) No edit summary | ||
| (41 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| This little JXSGraph application finds the line or the circle which is the best fit for given set of points. | |||
| If the resulting line is green, it is a straight line. If the line is blue, it is a circle. | |||
| <jsxgraph width="600" height="600"> | <jsxgraph width="600" height="600"> | ||
| var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true}); | var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true}); | ||
| var i,  | brd.suspendUpdate(); | ||
| // Experiments with lines and circles: | |||
| // 1) Plot random points on a line disturbed by a random factor | |||
|     var i, p1 = [], angle, xr, yr, delta = 0.1; | |||
|     // Random points are constructed which lie roughly on a line | |||
|     // defined by y = 0.3*x+1. | |||
|     // delta*0.5 is the maximal distance in y-direction of the random | |||
|     // points from the line. | |||
|     brd.suspendUpdate(); | |||
|     for (i=0;i<100;i++) { | |||
|         yr = 10*(Math.random()-0.5); | |||
|         xr = 0.*yr+delta*(Math.random()-0.5); | |||
|         p1.push(brd.create('point',[xr, yr], {withLabel:false})); | |||
|     } | |||
| // 2) Plot random points on a circle disturbed by a random factor | |||
|     var i, p2 = [], angle, co, si, delta = 0.2; | |||
|     // Random points are constructed which lie roughly on a circle | |||
|     // of radius 4 having the origin as center. | |||
|     // delta*0.5 is the maximal distance in x- and y- direction of the random | |||
|     // points from the circle line. | |||
|     for (i=0;i<100;i++) { | |||
|         angle = Math.random()*2*Math.PI; | |||
|         co = 4*Math.cos(angle)+delta*(Math.random()-0.5); | |||
|         si = 4*Math.sin(angle)+delta*(Math.random()-0.5); | |||
|         p2.push(brd.create('point',[co+2, si-1], {withLabel:false})); | |||
|     } | |||
| brd.unsuspendUpdate(); | |||
| // | |||
| // bestFit, the best-fitting circle or line is found by least-squares fitting. | |||
| // | |||
| var bestFit = function(p) { | |||
|     var i, j, r = [], rbar = [], x = [], y = [], z = [], A = [[0,0,0],[0,0,0],[0,0,0]], n, d, | |||
|         eigen, minIndex, minE, ev, c, xm, ym, zm, radius; | |||
|     n = p.length; | |||
|     for (i=0;i<n;i++) { | |||
|         r.push([1.0, p[i].X(), p[i].Y()]); | |||
|         d = r[i][0]*r[i][0] + r[i][1]*r[i][1] + r[i][2]*r[i][2]; | |||
|         r[i][0] = 1.0 - r[i][0]/d; | |||
|         r[i][1] /= d; | |||
|         r[i][2] /= d; | |||
|     } | |||
|     for (j=0;j<3;j++) { | |||
|         for (i=0,d=0;i<n;i++) { | |||
|             d += r[i][j]; | |||
|         } | |||
|         d /= n; | |||
|         rbar[j] = d; | |||
|         for (i=0;i<n;i++) { | |||
|             r[i][j] -= d; | |||
|         } | |||
|     } | |||
|     for (i=0;i<n;i++) { | |||
|         A[0][0] += r[i][0]*r[i][0]; | |||
|         A[0][1] += r[i][0]*r[i][1]; | |||
|         A[0][2] += r[i][0]*r[i][2]; | |||
|         A[1][0] += r[i][1]*r[i][0]; | |||
|         A[1][1] += r[i][1]*r[i][1]; | |||
|         A[1][2] += r[i][1]*r[i][2]; | |||
|         A[2][0] += r[i][2]*r[i][0]; | |||
|         A[2][1] += r[i][2]*r[i][1]; | |||
|         A[2][2] += r[i][2]*r[i][2]; | |||
|     } | |||
|     eigen = JXG.Math.Numerics.Jacobi(A); | |||
|     minIndex = 0; | |||
|     minE = eigen[0][0][0]; | |||
|     for (j=1;j<3;j++) { | |||
|         if (eigen[0][j][j]<minE) { | |||
|             minIndex = j; | |||
|             minE = eigen[0][j][j]; | |||
|         } | |||
|     } | |||
|     ev = [eigen[1][0][minIndex],eigen[1][1][minIndex],eigen[1][2][minIndex]]; | |||
|     c = -(rbar[0]*ev[0]+rbar[1]*ev[1]+rbar[2]*ev[2]); | |||
|     xm = -ev[1]; | |||
|     ym = -ev[2]; | |||
|     zm = 2.0*(c+ev[0]); | |||
|     //console.log(c, c+ev[0]); | |||
|     // If c is close to zero, the best fittting object is a line. | |||
|     // The best threshold parameter has yet to be determined. | |||
|     // At the moment it is set to 0.01. | |||
|     if (Math.abs(c)<0.01) { | |||
|         brd.create('line',[zm,xm,ym], {strokeColor:'green'}); | |||
|     }  else { | |||
|         radius = Math.sqrt((xm*xm+ym*ym-2*c*zm)/(zm*zm)); | |||
|         brd.create('circle',[[zm,xm,ym],radius]); | |||
|     } | |||
| }; // end of bestFit() | |||
| bestFit(p1); | |||
| bestFit(p2); | |||
| </jsxgraph> | |||
| ===The underlying JavaScript code=== | |||
| <source lang="javascript"> | |||
| var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true}); | |||
| brd.suspendUpdate(); | brd.suspendUpdate(); | ||
| for (i=0;i< | |||
| // Experiments with lines and circles: | |||
| // 1) Plot random points on a line disturbed by a random factor | |||
| } |     var i, p1 = [], angle, xr, yr, delta = 0.1; | ||
|     // Random points are constructed which lie roughly on a line | |||
|     // defined by y = 0.3*x+1. | |||
|     // delta*0.5 is the maximal distance in y-direction of the random | |||
|     // points from the line. | |||
|     brd.suspendUpdate(); | |||
|     for (i=0;i<100;i++) { | |||
|         yr = 10*(Math.random()-0.5); | |||
|         xr = 0.*yr+delta*(Math.random()-0.5); | |||
|         p1.push(brd.create('point',[xr, yr], {withLabel:false})); | |||
|     } | |||
| // 2) Plot random points on a circle disturbed by a random factor | |||
|     var i, p2 = [], angle, co, si, delta = 0.2; | |||
|     // Random points are constructed which lie roughly on a circle | |||
|     // of radius 4 having the origin as center. | |||
|     // delta*0.5 is the maximal distance in x- and y- direction of the random | |||
|     // points from the circle line. | |||
|     for (i=0;i<100;i++) { | |||
|         angle = Math.random()*2*Math.PI; | |||
|         co = 4*Math.cos(angle)+delta*(Math.random()-0.5); | |||
|         si = 4*Math.sin(angle)+delta*(Math.random()-0.5); | |||
|         p2.push(brd.create('point',[co+2, si-1], {withLabel:false})); | |||
|     } | |||
| brd.unsuspendUpdate(); | brd.unsuspendUpdate(); | ||
| //  | // | ||
| // by  | // bestFit, the best-fitting circle or line is found by least-squares fitting. | ||
| //  | // | ||
| var bestFit = function(p) { | |||
|     var i, j, r = [], rbar = [], x = [], y = [], z = [], A = [[0,0,0],[0,0,0],[0,0,0]], n, d, | |||
|         eigen, minIndex, minE, ev, c, xm, ym, zm, radius; | |||
|     n = p.length; | |||
|     for (i=0;i<n;i++) { | |||
|         r.push([1.0, p[i].X(), p[i].Y()]); | |||
|         d = r[i][0]*r[i][0] + r[i][1]*r[i][1] + r[i][2]*r[i][2]; | |||
|         r[i][0] = 1.0 - r[i][0]/d; | |||
| n = p.length; |         r[i][1] /= d; | ||
| for (i=0;i<n;i++) { |         r[i][2] /= d; | ||
|     } | |||
| } | |||
|     for (j=0;j<3;j++) { | |||
| / |         for (i=0,d=0;i<n;i++) { | ||
|             d += r[i][j]; | |||
|         } | |||
|         d /= n; | |||
|         rbar[j] = d; | |||
|         for (i=0;i<n;i++) { | |||
|             r[i][j] -= d; | |||
|         } | |||
|     } | |||
|     for (i=0;i<n;i++) { | |||
|         A[0][0] += r[i][0]*r[i][0]; | |||
|         A[0][1] += r[i][0]*r[i][1]; | |||
|         A[0][2] += r[i][0]*r[i][2]; | |||
|         A[1][0] += r[i][1]*r[i][0]; | |||
|         A[1][1] += r[i][1]*r[i][1]; | |||
|         A[1][2] += r[i][1]*r[i][2]; | |||
|         A[2][0] += r[i][2]*r[i][0]; | |||
|         A[2][1] += r[i][2]*r[i][1]; | |||
|         A[2][2] += r[i][2]*r[i][2]; | |||
|     } | |||
|     eigen = JXG.Math.Numerics.Jacobi(A); | |||
|     minIndex = 0; | |||
|     minE = eigen[0][0][0]; | |||
|     for (j=1;j<3;j++) { | |||
|         if (eigen[0][j][j]<minE) { | |||
|             minIndex = j; | |||
|             minE = eigen[0][j][j]; | |||
|         } | |||
|     } | |||
|     ev = [eigen[1][0][minIndex],eigen[1][1][minIndex],eigen[1][2][minIndex]]; | |||
|     c = -(rbar[0]*ev[0]+rbar[1]*ev[1]+rbar[2]*ev[2]); | |||
| </ |     xm = -ev[1]; | ||
|     ym = -ev[2]; | |||
|     zm = 2.0*(c+ev[0]); | |||
|     //console.log(c, c+ev[0]); | |||
|     // If c is close to zero, the best fittting object is a line. | |||
|     // The best threshold parameter has yet to be determined. | |||
|     // At the moment it is set to 0.01. | |||
|     if (Math.abs(c)<0.01) { | |||
|         brd.create('line',[zm,xm,ym], {strokeColor:'green'}); | |||
|     }  else { | |||
|         radius = Math.sqrt((xm*xm+ym*ym-2*c*zm)/(zm*zm)); | |||
|         brd.create('circle',[[zm,xm,ym],radius]); | |||
|     } | |||
| }; // end of bestFit() | |||
| bestFit(p1); | |||
| bestFit(p2); | |||
| </source> | |||
| [[Category:Examples]] | [[Category:Examples]] | ||
| [[Category:Statistics]] | [[Category:Statistics]] | ||
Latest revision as of 18:16, 9 November 2010
This little JXSGraph application finds the line or the circle which is the best fit for given set of points. If the resulting line is green, it is a straight line. If the line is blue, it is a circle.
The underlying JavaScript code
var brd = JXG.JSXGraph.initBoard('jxgbox',{boundingbox:[-5,5,5,-5], keepaspectratio:true, axis:true});
brd.suspendUpdate();
// Experiments with lines and circles:
// 1) Plot random points on a line disturbed by a random factor
    var i, p1 = [], angle, xr, yr, delta = 0.1;
    // Random points are constructed which lie roughly on a line
    // defined by y = 0.3*x+1.
    // delta*0.5 is the maximal distance in y-direction of the random
    // points from the line.
    brd.suspendUpdate();
    for (i=0;i<100;i++) {
        yr = 10*(Math.random()-0.5);
        xr = 0.*yr+delta*(Math.random()-0.5);
        p1.push(brd.create('point',[xr, yr], {withLabel:false}));
    }
// 2) Plot random points on a circle disturbed by a random factor
    var i, p2 = [], angle, co, si, delta = 0.2;
 
    // Random points are constructed which lie roughly on a circle
    // of radius 4 having the origin as center.
    // delta*0.5 is the maximal distance in x- and y- direction of the random
    // points from the circle line.
    for (i=0;i<100;i++) {
        angle = Math.random()*2*Math.PI;
 
        co = 4*Math.cos(angle)+delta*(Math.random()-0.5);
        si = 4*Math.sin(angle)+delta*(Math.random()-0.5);
        p2.push(brd.create('point',[co+2, si-1], {withLabel:false}));
    }
brd.unsuspendUpdate();
//
// bestFit, the best-fitting circle or line is found by least-squares fitting.
//
var bestFit = function(p) {
    var i, j, r = [], rbar = [], x = [], y = [], z = [], A = [[0,0,0],[0,0,0],[0,0,0]], n, d,
        eigen, minIndex, minE, ev, c, xm, ym, zm, radius;
    n = p.length;
    for (i=0;i<n;i++) {
        r.push([1.0, p[i].X(), p[i].Y()]);
        d = r[i][0]*r[i][0] + r[i][1]*r[i][1] + r[i][2]*r[i][2];
        r[i][0] = 1.0 - r[i][0]/d;
        r[i][1] /= d;
        r[i][2] /= d;
    }
    for (j=0;j<3;j++) {
        for (i=0,d=0;i<n;i++) {
            d += r[i][j];
        }
        d /= n;
        rbar[j] = d;
        for (i=0;i<n;i++) {
            r[i][j] -= d;
        }
    }
    for (i=0;i<n;i++) {
        A[0][0] += r[i][0]*r[i][0];
        A[0][1] += r[i][0]*r[i][1];
        A[0][2] += r[i][0]*r[i][2];
        A[1][0] += r[i][1]*r[i][0];
        A[1][1] += r[i][1]*r[i][1];
        A[1][2] += r[i][1]*r[i][2];
        A[2][0] += r[i][2]*r[i][0];
        A[2][1] += r[i][2]*r[i][1];
        A[2][2] += r[i][2]*r[i][2];
    }
    eigen = JXG.Math.Numerics.Jacobi(A);
    minIndex = 0;
    minE = eigen[0][0][0];
    for (j=1;j<3;j++) {
        if (eigen[0][j][j]<minE) {
            minIndex = j;
            minE = eigen[0][j][j];
        }
    }
    ev = [eigen[1][0][minIndex],eigen[1][1][minIndex],eigen[1][2][minIndex]];
    c = -(rbar[0]*ev[0]+rbar[1]*ev[1]+rbar[2]*ev[2]);
    xm = -ev[1];
    ym = -ev[2];
    zm = 2.0*(c+ev[0]);
    //console.log(c, c+ev[0]);
    // If c is close to zero, the best fittting object is a line.
    // The best threshold parameter has yet to be determined.
    // At the moment it is set to 0.01.
    if (Math.abs(c)<0.01) {
        brd.create('line',[zm,xm,ym], {strokeColor:'green'});
    }  else {
        radius = Math.sqrt((xm*xm+ym*ym-2*c*zm)/(zm*zm));
        brd.create('circle',[[zm,xm,ym],radius]);
    }
}; // end of bestFit()
bestFit(p1);
bestFit(p2);
