Autocatalytic process: Difference between revisions
From JSXGraph Wiki
| A WASSERMANN (talk | contribs) | A WASSERMANN (talk | contribs) No edit summary | ||
| (8 intermediate revisions by 2 users not shown) | |||
| Line 9: | Line 9: | ||
| The initial population is <math>y(0)= s</math>, <math>A := 5</math>. | The initial population is <math>y(0)= s</math>, <math>A := 5</math>. | ||
| <html> | <html> | ||
| <form><input type="button" value="clear and run" onClick="clearturtle();run()"></form> | <form><input type="button" value="clear and run" onClick="clearturtle();run()"></form> | ||
| </html> | </html> | ||
| <jsxgraph height="500" width="600"  | <jsxgraph height="500" width="600" box="box1"> | ||
| brd = JXG.JSXGraph.initBoard('box1', { | var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 12.5, 14.5, -12.5], keepaspectratio: false, axis:true}); | ||
| var t = brd. | var t = brd.create('turtle',[4,3,70]); | ||
| var s = brd. | var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | ||
| var alpha = brd. | var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | ||
| //var e = brd. | //var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'}); | ||
| t.hideTurtle(); | t.hideTurtle(); | ||
| A = 5; | var A = 5; | ||
| tau = 0.3; | var tau = 0.3; | ||
| function clearturtle() { | function clearturtle() { | ||
| Line 33: | Line 32: | ||
| function run() { | function run() { | ||
|    t.setPos(0,s. |    t.setPos(0,s.Value()); | ||
|    t.setPenSize(4); |    t.setPenSize(4); | ||
|    dx = 0.1; // global | |||
|    x = 0.0;  // global |    x = 0.0;  // global | ||
|    loop(); |    loop(); | ||
| Line 41: | Line 40: | ||
| function loop() { | function loop() { | ||
|    var  |    var dy = alpha.Value()*t.Y()*(A-t.Y())*dx; // Autocatalytic process | ||
|    t.moveTo([ |    t.moveTo([dx+t.X(),dy+t.Y()]); | ||
|    x +=  |    x += dx; | ||
|    if (x<20.0) { |    if (x<20.0) { | ||
|       setTimeout(loop,10); |       setTimeout(loop,10); | ||
| Line 55: | Line 54: | ||
| ===The JavaScript code=== | ===The JavaScript code=== | ||
| <source lang=" | <source lang="javascript"> | ||
| var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 12.5, 14.5, -12.5], keepaspectratio: false, axis:true}); | |||
| brd = JXG.JSXGraph.initBoard('box1', { | var t = brd.create('turtle',[4,3,70]); | ||
| var t = brd. | |||
| var s = brd. | var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'}); | ||
| var alpha = brd. | var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'}); | ||
| var e = brd. | //var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'}); | ||
| t.hideTurtle(); | t.hideTurtle(); | ||
| A = 5;  | var A = 5; | ||
| var tau = 0.3; | |||
| function clearturtle() { | function clearturtle() { | ||
|    t.cs(); |    t.cs(); | ||
| Line 73: | Line 73: | ||
| function run() { | function run() { | ||
|    t.setPos(0,s. |    t.setPos(0,s.Value()); | ||
|    t.setPenSize(4); |    t.setPenSize(4); | ||
|    dx = 0.1; // global | |||
|    x = 0.0;  // global |    x = 0.0;  // global | ||
|    loop(); |    loop(); | ||
| Line 81: | Line 81: | ||
| function loop() { | function loop() { | ||
|    var  |    var dy = alpha.Value()*t.Y()*(A-t.Y())*dx; // Autocatalytic process | ||
|    t.moveTo([ |    t.moveTo([dx+t.X(),dy+t.Y()]); | ||
|    x +=  |    x += dx; | ||
|    if (x<20.0) { |    if (x<20.0) { | ||
|       setTimeout(loop,10); |       setTimeout(loop,10); | ||
|    } |    } | ||
| } | } | ||
| </source> | </source> | ||
| [[Category:Examples]] | [[Category:Examples]] | ||
| [[Category:Calculus]] | |||
| [[Category:Turtle Graphics]] | [[Category:Turtle Graphics]] | ||
Latest revision as of 07:55, 16 July 2019
Autocatalytic population growth model
Here, in time [math]\displaystyle{ \Delta t }[/math] the population grows by [math]\displaystyle{ \alpha\cdot y \cdot(A-y) }[/math] elements: [math]\displaystyle{ \Delta y = \alpha\cdot y\cdot \Delta t \cdot(A-y) }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y \cdot(A-y) }[/math].
With [math]\displaystyle{ \Delta t\to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y \cdot (A-y) }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y \cdot (A-y) }[/math].
The initial population is [math]\displaystyle{ y(0)= s }[/math], [math]\displaystyle{ A := 5 }[/math].
Other models
The JavaScript code
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 12.5, 14.5, -12.5], keepaspectratio: false, axis:true});
var t = brd.create('turtle',[4,3,70]);
            
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'α'});
//var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});
t.hideTurtle();
            
var A = 5;
var tau = 0.3;
            
function clearturtle() {
  t.cs();
  t.ht();
}
            
function run() {
  t.setPos(0,s.Value());
  t.setPenSize(4);
  dx = 0.1; // global
  x = 0.0;  // global
  loop();
}
             
function loop() {
  var dy = alpha.Value()*t.Y()*(A-t.Y())*dx; // Autocatalytic process
  t.moveTo([dx+t.X(),dy+t.Y()]);
  x += dx;
  if (x<20.0) {
     setTimeout(loop,10);
  }
}
