Autocatalytic process: Difference between revisions

From JSXGraph Wiki
(New page: ===Exponential population growth model=== In time <math> \Delta y</math> the population grows by <math>\alpha\cdot y </math> elements: <math> \Delta y = \alpha\cdot y\cdot \Delta t </math>...)
 
No edit summary
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
===Exponential population growth model===
===Autocatalytic population growth model===
In time <math> \Delta y</math> the population grows by <math>\alpha\cdot y </math> elements:
Here, in time <math> \Delta t</math> the population grows by <math>\alpha\cdot y \cdot(A-y)</math> elements:
<math> \Delta y = \alpha\cdot y\cdot \Delta t </math>, that is  
<math> \Delta y = \alpha\cdot y\cdot \Delta t \cdot(A-y)</math>, that is  
<math> \frac{\Delta y}{\Delta t} = \alpha\cdot y </math>.
<math> \frac{\Delta y}{\Delta t} = \alpha\cdot y \cdot(A-y)</math>.


With <math>\Delta \to 0</math> we get
With <math>\Delta t\to 0</math> we get
<math> \frac{d y}{d t} = \alpha\cdot y </math>, i.e. <math> y' = \alpha\cdot y </math>.
<math> \frac{d y}{d t} = \alpha\cdot y \cdot (A-y) </math>, i.e. <math> y' = \alpha\cdot y \cdot (A-y) </math>.


The initial population is <math>y(0)= s</math>.
The initial population is <math>y(0)= s</math>, <math>A := 5</math>.


The red line shows the exact solution of the differential equation <math>y(t)=s\cdot e^{\alpha x}</math>.
The blue line is the simulation with <math>\Delta t = 0.1</math>.
<html>
<html>
<form><input type="button" value="clear and run" onClick="clearturtle();run()"></form>
<form><input type="button" value="clear and run" onClick="clearturtle();run()"></form>
</html>
</html>


<jsxgraph height="500" width="600" board="board"  box="box1">
<jsxgraph height="500" width="600" box="box1">
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true});
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 12.5, 14.5, -12.5], keepaspectratio: false, axis:true});
var t = brd.createElement('turtle',[4,3,70]);
var t = brd.create('turtle',[4,3,70]);
              
              
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'});
//var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});


t.hideTurtle();
t.hideTurtle();
              
              
A = 5;
var A = 5;
tau = 0.3;
var tau = 0.3;
              
              
function clearturtle() {
function clearturtle() {
Line 34: Line 32:
              
              
function run() {
function run() {
   t.setPos(0,s.X());
   t.setPos(0,s.Value());
   t.setPenSize(4);
   t.setPenSize(4);
   delta = 0.1; // global
   dx = 0.1; // global
   x = 0.0;  // global
   x = 0.0;  // global
   loop();
   loop();
Line 42: Line 40:
              
              
function loop() {
function loop() {
   //var y = alpha.X()*t.pos[1];  // Exponential growth
   var dy = alpha.Value()*t.Y()*(A-t.Y())*dx; // Autocatalytic process
  var y = alpha.X()*t.pos[1]*(A-t.pos[1]); // Autocatalytic process
   t.moveTo([dx+t.X(),dy+t.Y()]);
  //var y = (alpha.X()*t.pos[1]-tau*t.pos[1]*t.pos[1]); // Logistic process
   x += dx;
   t.moveTo([1.0+t.pos[0],y+t.pos[1]]);
   if (x<20.0) {
   x += delta;
     setTimeout(loop,10);
   if (x<10.0) {
     setTimeout(loop,50);
   }
   }
}
}
</jsxgraph>
</jsxgraph>


===Other models===
* [[Population growth models]]
* [[Population growth models]]
* [[Logistic process]]
* [[Logistic process]]


===The JavaScript code===
===The JavaScript code===
<source lang="xml">
<source lang="javascript">
<jsxgraph height="500" width="600" board="board"  box="box1">
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 12.5, 14.5, -12.5], keepaspectratio: false, axis:true});
brd = JXG.JSXGraph.initBoard('box1', {originX: 10, originY: 250, unitX: 40, unitY: 20, axis:true});
var t = brd.create('turtle',[4,3,70]);
var t = brd.createElement('turtle',[4,3,70]);
              
              
var s = brd.createElement('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.createElement('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
var e = brd.createElement('functiongraph', [function(x){return s.X()*Math.exp(alpha.X()*x);}],{strokeColor:'red'});
//var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});


t.hideTurtle();
t.hideTurtle();
           
var A = 5;
var tau = 0.3;
              
              
function clearturtle() {
function clearturtle() {
Line 74: Line 73:
              
              
function run() {
function run() {
   t.setPos(0,s.X());
   t.setPos(0,s.Value());
   t.setPenSize(4);
   t.setPenSize(4);
   delta = 0.1; // global
   dx = 0.1; // global
   x = 0.0;  // global
   x = 0.0;  // global
   loop();
   loop();
Line 82: Line 81:
              
              
function loop() {
function loop() {
   var y = alpha.X()*t.pos[1]*(A-t.pos[1]); // Autocatalytic process
   var dy = alpha.Value()*t.Y()*(A-t.Y())*dx; // Autocatalytic process
   t.moveTo([1.0+t.pos[0],y+t.pos[1]]);
   t.moveTo([dx+t.X(),dy+t.Y()]);
   x += delta;
   x += dx;
   if (x<10.0) {
   if (x<20.0) {
     setTimeout(loop,50);
     setTimeout(loop,10);
   }
   }
}
}
</jsxgraph>
</source>
</source>


[[Category:Examples]]
[[Category:Examples]]
[[Category:Calculus]]
[[Category:Turtle Graphics]]
[[Category:Turtle Graphics]]

Latest revision as of 07:55, 16 July 2019

Autocatalytic population growth model

Here, in time [math]\displaystyle{ \Delta t }[/math] the population grows by [math]\displaystyle{ \alpha\cdot y \cdot(A-y) }[/math] elements: [math]\displaystyle{ \Delta y = \alpha\cdot y\cdot \Delta t \cdot(A-y) }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y \cdot(A-y) }[/math].

With [math]\displaystyle{ \Delta t\to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y \cdot (A-y) }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y \cdot (A-y) }[/math].

The initial population is [math]\displaystyle{ y(0)= s }[/math], [math]\displaystyle{ A := 5 }[/math].

Other models

The JavaScript code

var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 12.5, 14.5, -12.5], keepaspectratio: false, axis:true});
var t = brd.create('turtle',[4,3,70]);
            
var s = brd.create('slider', [[0,-5], [10,-5],[-5,0.5,5]], {name:'s'});
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.2,2]], {name:'&alpha;'});
//var e = brd.create('functiongraph', [function(x){return s.Value()*Math.exp(alpha.Value()*x);}],{strokeColor:'red'});

t.hideTurtle();
            
var A = 5;
var tau = 0.3;
            
function clearturtle() {
  t.cs();
  t.ht();
}
            
function run() {
  t.setPos(0,s.Value());
  t.setPenSize(4);
  dx = 0.1; // global
  x = 0.0;  // global
  loop();
}
             
function loop() {
  var dy = alpha.Value()*t.Y()*(A-t.Y())*dx; // Autocatalytic process
  t.moveTo([dx+t.X(),dy+t.Y()]);
  x += dx;
  if (x<20.0) {
     setTimeout(loop,10);
  }
}