Analyze data with the Statistics software R: Difference between revisions
From JSXGraph Wiki
| No edit summary | A WASSERMANN (talk | contribs) No edit summary | ||
| (6 intermediate revisions by one other user not shown) | |||
| Line 76: | Line 76: | ||
|                  t += p[i].Y() + ';'; |                  t += p[i].Y() + ';'; | ||
|              } |              } | ||
|              new Ajax.Request('/~ |              new Ajax.Request('/~alfred/jsxgraph/examples/rserv.php', { | ||
|                  method:'post', |                  method:'post', | ||
|                  parameters:'input='+escape(t), |                  parameters:'input='+escape(t), | ||
| Line 88: | Line 88: | ||
|                          var sd = a[1]*1.0; |                          var sd = a[1]*1.0; | ||
|                          var med = a[2]*1.0; |                          var med = a[2]*1.0; | ||
|                          var mad = a[3]*1.0; |                          var mad = a[3]*1.0; | ||
|                          var est1 = a[4]*1.0; |                          var est1 = a[4]*1.0; | ||
|                          var est2 = a[5]*1.0; |                          var est2 = a[5]*1.0; | ||
|                          if (!graph2) {   |                          if (!graph2) {   | ||
|                              graph2 = brd.createElement('curve', [[x[0],x[x.length-1]],[m,m]], {strokecolor:'red'});   |                              graph2 = brd.createElement('curve', [[x[0],x[x.length-1]],[m,m]], {strokecolor:'red'});   | ||
| Line 114: | Line 114: | ||
|                          } |                          } | ||
|                          document.getElementById('output').innerHTML = '<b><font size="+1">Normal location and scale:</font></b><br /><br />'+   | |||
|                                  '<b>Estimates for location (true value = 10):</b><br />' + |                                  '<b>Estimates for location (true value = 10):</b><br />' + | ||
|                                  'Mean = ' +  |                                  'Mean = ' + Math.round(m,2) + '<br />' + | ||
|                                  'Median = ' +  |                                  'Median = ' + Math.round(med,2) + '<br />' + | ||
|                                  'Radius-minimax estimator = ' +  |                                  'Radius-minimax estimator = ' + Math.round(est1,2) + '<br /><br />' + | ||
|                                  '<b>Estimates for scale (true value = 3):</b><br />' + |                                  '<b>Estimates for scale (true value = 3):</b><br />' + | ||
|                                  'Standard deviation = ' +  |                                  'Standard deviation = ' + Math.round(sd,2) + '<br />' + | ||
|                                  'MAD = ' +  |                                  'MAD = ' + Math.round(mad,2) + '<br />' +   | ||
|                                  'Radius-minimax estimator = ' +  |                                  'Radius-minimax estimator = ' + Math.round(est2,2) + '<br />'; | ||
|                          brd.update(); |                          brd.update(); | ||
|                      }; |                      }; | ||
| Line 145: | Line 145: | ||
| * [http://en.wikipedia.org/wiki/Robust_statistics Wikipedia on Robust Statistics] | * [http://en.wikipedia.org/wiki/Robust_statistics Wikipedia on Robust Statistics] | ||
| [[Category: | [[Category:Old]] | ||
Latest revision as of 12:55, 18 October 2024
Normal Location and Scale
This litte application sends the y-coordinates of the points which are normal distributed (pseudo-)random numbers to the server.
 
There, location and scale of the sample are estimated using the Statistics software R.
The return values are plotted and displayed.
The computed estimates are:
 
- mean, standard deviation: red (non-robust!)
- median and MAD: black (most-robust!)
- radius-minimax estimator: green (optimally robust; cf. Rieder et al. (2008))
By changing the y-position of the four movable points you should recognize the instability (non-robustness) of mean and standard deviation in contrast to the robust estimates; e.g., move one of the four movable points to the top of the plot.
Online results:
Statistics:<br>
The underlying source code
The underlying JavaScript and PHP code
The R script can be downloaded here.
References
- The Costs of not Knowing the Radius, Helmut Rieder, Matthias Kohl and Peter Ruckdeschel, Statistical Methods and Application 2008 Feb; 17(1): p.13-40; cf. also [1] for an extended version.
- Robust Asymptotic Statistics, Helmut Rieder, Springer, 1994.
- Numerical Contributions to the Asymptotic Theory of Robustness, Matthias Kohl, PhD-Thesis, University of Bayreuth, 2005; cf. also [2].
