Logistic process: Difference between revisions
From JSXGraph Wiki
A WASSERMANN (talk | contribs) (New page: ===Logistic population growth model=== In time <math> \Delta t</math> the population grows by <math>\alpha\cdot y -\tau\cdot y^2)</math> elements: <math> \Delta y = (\alpha\cdot y- \tau\cd...) |
A WASSERMANN (talk | contribs) No edit summary |
||
(15 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
===Logistic population growth model=== | ===Logistic population growth model=== | ||
In time <math> \Delta t</math> the population grows by <math>\alpha\cdot y -\tau\cdot y^2 | In time <math> \Delta t</math> the population grows by <math>\alpha\cdot y -\tau\cdot y^2</math> elements: | ||
<math> \Delta y = (\alpha\cdot y- \tau\cdot y^2)\cdot \Delta t</math>, that is | <math> \Delta y = (\alpha\cdot y- \tau\cdot y^2)\cdot \Delta t</math>, that is | ||
<math> \frac{\Delta y}{\Delta t} = \alpha\cdot y -\tau\cdot y^2</math>. | <math> \frac{\Delta y}{\Delta t} = \alpha\cdot y -\tau\cdot y^2</math>. | ||
With <math>\Delta \to 0</math> we get | With <math>\Delta t\to 0</math> we get | ||
<math> \frac{d y}{d t} = \alpha\cdot y -\tau\cdot y^2 </math>, i.e. <math> y' = \alpha\cdot y -\tau\cdot y^2 </math>. | <math> \frac{d y}{d t} = \alpha\cdot y -\tau\cdot y^2 </math>, i.e. <math> y' = \alpha\cdot y -\tau\cdot y^2 </math>. | ||
The initial population is <math>y(0)= s</math>, <math>\tau:=0.3</math>. | The initial population is <math>y(0)= s</math>, <math>\tau:=0.3</math>. | ||
<html> | <html> | ||
<form><input type="button" value="clear and run" onClick="clearturtle();run()"></form> | <form><input type="button" value="clear and run" onClick="clearturtle();run()"></form> | ||
Line 15: | Line 14: | ||
<jsxgraph height="500" width="600" board="board" box="box1"> | <jsxgraph height="500" width="600" board="board" box="box1"> | ||
brd = JXG.JSXGraph.initBoard('box1', { | var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 11.5, 14.5, -11.5], axis:true}); | ||
var t = brd. | var t = brd.create('turtle',[4,3,70]); | ||
var s = brd.create('slider', [[0,-5], [10,-5],[0,0.5,5]], {name:'s'}); | |||
var s = brd. | var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.9,2]], {name:'α'}); | ||
var alpha = brd. | |||
t.hideTurtle(); | t.hideTurtle(); | ||
A = 5; | var A = 5; | ||
tau = 0.3; | var tau = 0.3; | ||
function clearturtle() { | function clearturtle() { | ||
Line 33: | Line 30: | ||
function run() { | function run() { | ||
t.setPos(0,s. | t.setPos(0,s.Value()); | ||
t.setPenSize(4); | t.setPenSize(4); | ||
dx = 0.1; // global | |||
x = 0.0; // global | x = 0.0; // global | ||
loop(); | loop(); | ||
Line 41: | Line 38: | ||
function loop() { | function loop() { | ||
var dy = (alpha.Value()*t.Y()-tau*t.Y()*t.Y())*dx; // Logistic process | |||
t.moveTo([dx+t.X(),dy+t.Y()]); | |||
x += dx; | |||
t.moveTo([ | if (x<20.0) { | ||
x += | setTimeout(loop,10); | ||
if (x< | |||
setTimeout(loop, | |||
} | } | ||
} | } | ||
</jsxgraph> | </jsxgraph> | ||
===Other models=== | |||
* [[Population growth models]] | * [[Population growth models]] | ||
* [[ | * [[Autocatalytic process]] | ||
===The JavaScript code=== | ===The JavaScript code=== | ||
<source lang=" | <source lang="javascript"> | ||
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 11.5, 14.5, -11.5], axis:true}); | |||
brd = JXG.JSXGraph.initBoard('box1', { | var t = brd.create('turtle',[4,3,70]); | ||
var t = brd. | var s = brd.create('slider', [[0,-5], [10,-5],[0,0.5,5]], {name:'s'}); | ||
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.9,2]], {name:'α'}); | |||
var s = brd. | |||
var alpha = brd. | |||
t.hideTurtle(); | t.hideTurtle(); | ||
A = 5; | var A = 5; | ||
var tau = 0.3; | |||
function clearturtle() { | function clearturtle() { | ||
t.cs(); | t.cs(); | ||
Line 74: | Line 70: | ||
function run() { | function run() { | ||
t.setPos(0,s. | t.setPos(0,s.Value()); | ||
t.setPenSize(4); | t.setPenSize(4); | ||
dx = 0.1; // global | |||
x = 0.0; // global | x = 0.0; // global | ||
loop(); | loop(); | ||
Line 82: | Line 78: | ||
function loop() { | function loop() { | ||
var | var dy = (alpha.Value()*t.Y()-tau*t.Y()*t.Y())*dx; // Logistic process | ||
t.moveTo([ | t.moveTo([dx+t.X(),dy+t.Y()]); | ||
x += | x += dx; | ||
if (x< | if (x<20.0) { | ||
setTimeout(loop, | setTimeout(loop,10); | ||
} | } | ||
} | } | ||
</source> | </source> | ||
[[Category:Examples]] | [[Category:Examples]] | ||
[[Category:Calculus]] | |||
[[Category:Turtle Graphics]] | [[Category:Turtle Graphics]] |
Latest revision as of 07:54, 16 July 2019
Logistic population growth model
In time [math]\displaystyle{ \Delta t }[/math] the population grows by [math]\displaystyle{ \alpha\cdot y -\tau\cdot y^2 }[/math] elements: [math]\displaystyle{ \Delta y = (\alpha\cdot y- \tau\cdot y^2)\cdot \Delta t }[/math], that is [math]\displaystyle{ \frac{\Delta y}{\Delta t} = \alpha\cdot y -\tau\cdot y^2 }[/math].
With [math]\displaystyle{ \Delta t\to 0 }[/math] we get [math]\displaystyle{ \frac{d y}{d t} = \alpha\cdot y -\tau\cdot y^2 }[/math], i.e. [math]\displaystyle{ y' = \alpha\cdot y -\tau\cdot y^2 }[/math].
The initial population is [math]\displaystyle{ y(0)= s }[/math], [math]\displaystyle{ \tau:=0.3 }[/math].
Other models
The JavaScript code
var brd = JXG.JSXGraph.initBoard('box1', {boundingbox: [-0.5, 11.5, 14.5, -11.5], axis:true});
var t = brd.create('turtle',[4,3,70]);
var s = brd.create('slider', [[0,-5], [10,-5],[0,0.5,5]], {name:'s'});
var alpha = brd.create('slider', [[0,-6], [10,-6],[-1,0.9,2]], {name:'α'});
t.hideTurtle();
var A = 5;
var tau = 0.3;
function clearturtle() {
t.cs();
t.ht();
}
function run() {
t.setPos(0,s.Value());
t.setPenSize(4);
dx = 0.1; // global
x = 0.0; // global
loop();
}
function loop() {
var dy = (alpha.Value()*t.Y()-tau*t.Y()*t.Y())*dx; // Logistic process
t.moveTo([dx+t.X(),dy+t.Y()]);
x += dx;
if (x<20.0) {
setTimeout(loop,10);
}
}