Extended mean value theorem: Difference between revisions
A WASSERMANN (talk | contribs) No edit summary  | 
				A WASSERMANN (talk | contribs) No edit summary  | 
				||
| (39 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
The ''extended mean value theorem'' (also called ''Cauchy's mean value theorem'') is usually formulated as:  | |||
Let  | |||
:<math> f, g: [a,b] \to \mathbb{R}</math>  | |||
be continuous functions that are differentiable on the open interval <math>(a,b)</math>.  | |||
If <math>g'(x)\neq 0</math> for all <math>x\in(a,b)</math>,  | |||
then there exists a value <math>\xi \in (a,b)</math> such that  | |||
:<math>  | |||
\frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}.  | |||
</math>  | |||
'''Remark:'''  | |||
It seems to be easier to state the extended mean value theorem in the following form:  | |||
Let  | |||
:<math> f, g: [a,b] \to \mathbb{R}</math>  | |||
be continuous functions that are differentiable on the open interval <math>(a,b)</math>.  | |||
Then there exists a value <math>\xi \in (a,b)</math> such that  | |||
:<math>  | |||
f'(\xi)\cdot (g(b)-g(a))  = g'(\xi) \cdot (f(b)-f(a)).  | |||
</math>  | |||
This second formulation avoids the need that   | |||
<math>g'(x)\neq 0</math> for all <math>x\in(a,b)</math> and is therefore much easier to  | |||
handle numerically.  | |||
The proof is similar, just use the function   | |||
:<math>   | |||
h(x) = f(x)\cdot(g(b)-g(a)) - (g(x)-g(a))\cdot(f(b)-f(a))  | |||
</math>  | |||
and apply Rolle's theorem.  | |||
'''Visualization:'''  | |||
The extended mean value theorem says that given the curve  | |||
:<math> C: [a,b]\to\mathbb{R}, \quad t \mapsto (f(t), g(t)) </math>  | |||
with the above prerequisites for <math>f</math> and <math>g</math>,  | |||
there exists a <math>\xi</math> such that the tangent to the curve in the point <math>C(\xi)</math>    | |||
is parallel to the secant through <math>C(a)</math> and <math>C(b)</math>.  | |||
<jsxgraph width="600" height="400" box="box">  | <jsxgraph width="600" height="400" box="box">  | ||
var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true});  | var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true});  | ||
var p = [];  | var p = [];  | ||
p[0] = board.create('point', [0, -2], {size:2, name: 'C(a)'});  | |||
p[0] = board.create('point', [  | p[1] = board.create('point', [-1.5, 5], {size:2, name: ''});  | ||
p[1] = board.create('point', [-1.5, 5], {size:2});  | p[2] = board.create('point', [1, 4], {size:2, name: ''});  | ||
p[2] = board.create('point', [1,4], {size:2});  | p[3] = board.create('point', [3, 3], {size:2, name: 'C(b)'});  | ||
p[3] = board.create('point', [3,  | |||
// Curve  | // Curve  | ||
var fg = JXG.Math.Numerics.Neville(p);  | var fg = JXG.Math.Numerics.Neville(p);  | ||
var graph = board.create('curve', fg, {strokeWidth:3, strokeOpacity:0.5});  | var graph = board.create('curve', fg, {strokeWidth:3, strokeOpacity:0.5});  | ||
// Secant    | // Secant    | ||
| Line 20: | Line 57: | ||
var dg = JXG.Math.Numerics.D(fg[1]);  | var dg = JXG.Math.Numerics.D(fg[1]);  | ||
// Usually, the extended mean value theorem is formulated as  | |||
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())  | |||
// We can avoid division by zero with the following formulation:  | |||
var quot = function(t) {  | var quot = function(t) {  | ||
    return df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());  | |||
};  | };  | ||
var r = board.create('glider', [  | var r = board.create('glider', [  | ||
            function() { return fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },  | |||
            function() { return fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },  | |||
            graph], {name: 'C(ξ)', size: 4, fixed:true, color: 'blue'});  | |||
return fg[0](JXG.Math.Numerics.root(quot,   | |||
board.create('tangent', [r], {strokeColor:'#ff0000'});  | board.create('tangent', [r], {strokeColor:'#ff0000'});  | ||
</jsxgraph>  | </jsxgraph>  | ||
===The underlying JavaScript code===  | ===The underlying JavaScript code===  | ||
<source lang="javascript">  | <source lang="javascript">  | ||
var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true});  | |||
var p = [];  | |||
p[0] = board.create('point', [0, -2], {size:2, name: 'C(a)'});  | |||
p[1] = board.create('point', [-1.5, 5], {size:2, name: ''});  | |||
p[2] = board.create('point', [1, 4], {size:2, name: ''});  | |||
p[3] = board.create('point', [3, 3], {size:2, name: 'C(b)'});  | |||
// Curve  | |||
var fg = JXG.Math.Numerics.Neville(p);  | |||
var graph = board.create('curve', fg, {strokeWidth:3, strokeOpacity:0.5});  | |||
// Secant   | |||
line = board.create('line', [p[0], p[3]], {strokeColor:'#ff0000', dash:1});  | |||
var df = JXG.Math.Numerics.D(fg[0]);  | |||
var dg = JXG.Math.Numerics.D(fg[1]);  | |||
// Usually, the extended mean value theorem is formulated as  | |||
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())  | |||
// We can avoid division by zero with the following formulation:  | |||
var quot = function(t) {  | |||
    return df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());  | |||
};  | |||
var r = board.create('glider', [  | |||
            function() { return fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },  | |||
            function() { return fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },  | |||
            graph], {name: 'C(ξ)', size: 4, fixed:true, color: 'blue'});  | |||
board.create('tangent', [r], {strokeColor:'#ff0000'});  | |||
</source>  | </source>  | ||
[[Category:Examples]]  | [[Category:Examples]]  | ||
[[Category:Calculus]]  | [[Category:Calculus]]  | ||
Latest revision as of 11:38, 4 February 2019
The extended mean value theorem (also called Cauchy's mean value theorem) is usually formulated as:
Let
- [math]\displaystyle{ f, g: [a,b] \to \mathbb{R} }[/math]
 
be continuous functions that are differentiable on the open interval [math]\displaystyle{ (a,b) }[/math]. If [math]\displaystyle{ g'(x)\neq 0 }[/math] for all [math]\displaystyle{ x\in(a,b) }[/math], then there exists a value [math]\displaystyle{ \xi \in (a,b) }[/math] such that
- [math]\displaystyle{ \frac{f'(\xi)}{g'(\xi)} = \frac{f(b)-f(a)}{g(b)-g(a)}. }[/math]
 
Remark: It seems to be easier to state the extended mean value theorem in the following form:
Let
- [math]\displaystyle{ f, g: [a,b] \to \mathbb{R} }[/math]
 
be continuous functions that are differentiable on the open interval [math]\displaystyle{ (a,b) }[/math]. Then there exists a value [math]\displaystyle{ \xi \in (a,b) }[/math] such that
- [math]\displaystyle{ f'(\xi)\cdot (g(b)-g(a)) = g'(\xi) \cdot (f(b)-f(a)). }[/math]
 
This second formulation avoids the need that [math]\displaystyle{ g'(x)\neq 0 }[/math] for all [math]\displaystyle{ x\in(a,b) }[/math] and is therefore much easier to handle numerically.
The proof is similar, just use the function
- [math]\displaystyle{ h(x) = f(x)\cdot(g(b)-g(a)) - (g(x)-g(a))\cdot(f(b)-f(a)) }[/math]
 
and apply Rolle's theorem.
Visualization: The extended mean value theorem says that given the curve
- [math]\displaystyle{ C: [a,b]\to\mathbb{R}, \quad t \mapsto (f(t), g(t)) }[/math]
 
with the above prerequisites for [math]\displaystyle{ f }[/math] and [math]\displaystyle{ g }[/math], there exists a [math]\displaystyle{ \xi }[/math] such that the tangent to the curve in the point [math]\displaystyle{ C(\xi) }[/math] is parallel to the secant through [math]\displaystyle{ C(a) }[/math] and [math]\displaystyle{ C(b) }[/math].
The underlying JavaScript code
var board = JXG.JSXGraph.initBoard('box', {boundingbox: [-5, 10, 7, -6], axis:true});
var p = [];
p[0] = board.create('point', [0, -2], {size:2, name: 'C(a)'});
p[1] = board.create('point', [-1.5, 5], {size:2, name: ''});
p[2] = board.create('point', [1, 4], {size:2, name: ''});
p[3] = board.create('point', [3, 3], {size:2, name: 'C(b)'});
// Curve
var fg = JXG.Math.Numerics.Neville(p);
var graph = board.create('curve', fg, {strokeWidth:3, strokeOpacity:0.5});
// Secant 
line = board.create('line', [p[0], p[3]], {strokeColor:'#ff0000', dash:1});
var df = JXG.Math.Numerics.D(fg[0]);
var dg = JXG.Math.Numerics.D(fg[1]);
// Usually, the extended mean value theorem is formulated as
// df(t) / dg(t) == (p[3].X() - p[0].X()) / (p[3].Y() - p[0].Y())
// We can avoid division by zero with the following formulation:
var quot = function(t) {
    return df(t) * (p[3].Y() - p[0].Y()) - dg(t) * (p[3].X() - p[0].X());
};
var r = board.create('glider', [
            function() { return fg[0](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },
            function() { return fg[1](JXG.Math.Numerics.root(quot, (fg[3]() + fg[2]) * 0.5)); },
            graph], {name: 'C(ξ)', size: 4, fixed:true, color: 'blue'});
board.create('tangent', [r], {strokeColor:'#ff0000'});